Smartphone Market Analysis with Respect to Brand Performance Using Hybrid Multicriteria Decision Making Methods
Abstract
:1. Introduction
2. Literature Reviews
3. Research Methodologies
3.1. Shannon’s Entropy
3.2. The VIKOR Model
3.3. The TOPSIS Model
3.4. SMART–ROC Method
4. Data Analysis and Results
4.1. The VIKOR Model
4.2. The TOPSIS Method
4.3. The SMART Model
4.4. Sensitivity Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rahim, A.; Safin, S.Z.; Kheng, L.K.; Abas, N.; Ali, S.M. Factors Influencing Purchasing Intention of Smartphone among University Students. Procedia Econ. Financ. 2016, 37, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Lee, H.; Lee, J. Smartphone preferences and brand loyalty: A discrete choice model reflecting the reference point and peer effect. J. Retail. Consum. Serv. 2019, 52, 101907. [Google Scholar] [CrossRef]
- Erickson, G.M.; Johansson, J.K. The Role of Price in Multi-Attribute Product Evaluations. J. Consum. Res. 1985, 12, 195–199. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Ahn, H.; Seo, D.; Seo, D.; Lee, J.; Choi, C. Accuracy evaluation of a smartphone-based technology for coastal monitoring. Measurement 2013, 46, 233–248. [Google Scholar] [CrossRef]
- Yoon, S.; Oh, S.; Song, S.; Kim, K.K.; Kim, Y. Higher quality or lower price? How value-increasing promotions affect retailer reputation via perceived value. J. Bus. Res. 2014, 67, 2088–2096. [Google Scholar] [CrossRef] [Green Version]
- Tsaur, R.C.; Chen, I.F.; Chen, Y. Smartphone Market Analysis Using Dynamic Multi-Criteria Decision Methods. Int. J. Inf. Manag. Sci. 2016, 27, 41–60. [Google Scholar]
- Cho, Y.C.; Jeon, J.W. Current software platforms on mobile phone. In Proceedings of the International Conference on Control, Automation and Systems, ICCAS, Seoul, Korea, 17–20 October 2007; pp. 1862–1867. [Google Scholar] [CrossRef]
- Mehra, A.; Rajput, S.; Paul, J. Determinants of adoption of latest version smartphones: Theory and evidence. Technol. Forecast. Soc. Chang. 2021, 175, 121410. [Google Scholar] [CrossRef]
- Chen, C.C. Evaluating Operating Systems of Smart Phones through a Fuzzy MCDM Approach. Master’s Thesis, Southern Taiwan University of Science and Technology, Tainan, Taiwan, 2010. [Google Scholar]
- Kao, S.W. Using Multiple Criteria Decision Making to Select Smart Phone. Master’s Thesis, National Formosa University, Huwei, Taiwan, 2011. [Google Scholar]
- Chen, Y.-Y.H. Using Analytic Hierarchy Process to Select Smartphones—The Case Study in Central Taiwan. Master’s Thesis, National Formosa University, Huwei, Taiwan, 2012. [Google Scholar]
- Zeng, C.J. Product Aesthetic Attributes as Competitive Strategy—The Study of Smart Phones in Taiwan’s Market. Master’s Thesis, Tamkang University, New Taipei, Taiwan, 2009. [Google Scholar]
- Liu, C.C.; Huang, H.L. Using Q Methodology to Explore the Reaction Types of Smartphone Users. Electron. Commer. Stud. 2014, 12, 27–49. [Google Scholar]
- Liu, C.-J.; Liang, H.-Y. The Deep Impression of Smartphone Brand on the Customers’ Decision Making. Procedia-Soc. Behav. Sci. 2014, 109, 338–343. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.C.; Tang, X.; Wong, Y.C.; Wei, C.-P. Understanding Online Consumer Review Opinions with Sentiment Analysis using Machine Learning. Pac. Asia J. Assoc. Inf. Syst. 2010, 2, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Hyrynsalmi, S.; Seppänen, M.; Aarikka-Stenroos, L.; Suominen, A.; Järveläinen, J.; Harkke, V. Busting Myths of Electronic Word of Mouth: The Relationship between Customer Ratings and the Sales of Mobile Applications. J. Theor. Appl. Electron. Commer. Res. 2015, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Lu, Y.W. Evaluation and analysis the quality of financial operation-to the 31 provinces and municipalities for example. J. Manag. Sci. Stat. Decis. 2012, 9, 64–73. [Google Scholar]
- Archak, N.; Ghose, A.; Ipeirotis, P. Deriving the Pricing Power of Product Features by Mining Consumer Reviews. Manag. Sci. 2011, 57, 1485–1509. [Google Scholar] [CrossRef] [Green Version]
- Ghose, A.; Ipeirotis, P. Estimating the Helpfulness and Economic Impact of Product Reviews: Mining Text and Reviewer Characteristics. IEEE Trans. Knowl. Data Eng. 2010, 23, 1498–1512. [Google Scholar] [CrossRef] [Green Version]
- Keller, K.L. Conceptualizing, measuring, and managing customer-based brand equity. J. Mark. 1993, 57, 1–22. [Google Scholar] [CrossRef]
- Schmitt, B. The consumer psychology of brands. J. Consum. Psychol. 2012, 22, 7–17. [Google Scholar] [CrossRef]
- Filieri, R.; Lin, Z. The role of aesthetic, cultural, utilitarian and branding factors in young Chinese consumers’ repurchase intention of smartphone brands. Comput. Hum. Behav. 2017, 67, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Cretu, A.E.; Brodie, R.J. The influence of brand image and company reputation where manufacturers market to small firms: A customer value perspective. Ind. Mark. Manag. 2007, 36, 230–240. [Google Scholar] [CrossRef]
- Martins, J.; Costa, C.; Oliveira, T.; Gonçalves, R.; Branco, F. How smartphone advertising influences consumers’ purchase intention. J. Bus. Res. 2019, 94, 378–387. [Google Scholar] [CrossRef]
- Grewal, D.; Krishnan, R.; Baker, J.; Borin, N. The effect of store name, brand name and price discounts on consumers’ evaluations and purchase intentions. J. Retail. 1998, 7, 331–352. [Google Scholar] [CrossRef] [Green Version]
- Aaker, J. The malleable self: The role of self-expression in persuasion. J. Mark. Res. 1999, 36, 45–57. [Google Scholar] [CrossRef]
- Opricovic, S. Multicriteria Optimization of Civil Engineering Systems; Faculty of Civil Engineering: Belgrade, Serbia, 1998. [Google Scholar]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar]
- Edwards, W. How to Use Multiattribute Utility Measurement for Social Decisionmaking. IEEE Trans. Syst. Man Cybern. 1977, 7, 326–340. [Google Scholar] [CrossRef]
- Barykin, S.Y.; Kapustina, I.V.; Sergeev, S.M.; Kalinina, O.V.; Vilken, V.V.; de la Poza, E.; Putikhin, Y.Y.; Volkova, L.V. Developing the physical distribution digital twin model within the trade network. Acad. Strateg. Manag. J. 2021, 20, 1–18. [Google Scholar]
- Khalid, B.; Naumova, E. Digital transformation SCM in view of COVID-19 from Thailand SMEs perspective. In Global Challenges of Digital Transformation of Markets; Nova Science Publishers: Hauppauge, NY, USA, 2021; pp. 49–66. [Google Scholar]
Attributes | Brand | A | B | C | D | E | F | G | H | I | |
---|---|---|---|---|---|---|---|---|---|---|---|
Items | |||||||||||
Smartphone | Size | 7.1 | 5.5 | 7.3 | 6.4 | 7.1 | 7 | 6.1 | 7.2 | 6.2 | |
Appearance | Weight | 7 | 6 | 7.2 | 6.2 | 7.2 | 7.2 | 6.2 | 7.1 | 6.3 | |
CPU | 7.1 | 5.9 | 7.1 | 6.1 | 6.7 | 6.6 | 6.1 | 7.2 | 6.2 | ||
Mainboard | RAM | 7.1 | 6.3 | 7.2 | 6.2 | 6.8 | 6.5 | 6.2 | 7.3 | 6.2 | |
Radiator | 6.9 | 6.1 | 7.3 | 6.1 | 6.7 | 6.7 | 6.4 | 6.6 | 6 | ||
Sensors | 7.6 | 5.6 | 7.4 | 6.1 | 6.3 | 5.9 | 6.2 | 7.5 | 6.2 | ||
Input | Main camera | 7.1 | 5.8 | 7.5 | 5.9 | 6.5 | 6.3 | 6.4 | 7.3 | 6.2 | |
Device | Front camera | 7.1 | 5.9 | 7.5 | 6.1 | 6.4 | 6.4 | 6.4 | 7.2 | 6.2 | |
Light sensor | 7.3 | 5.8 | 7.4 | 5.8 | 6.4 | 6.3 | 6.6 | 7.4 | 6.3 | ||
Display size | 7.1 | 6.3 | 7.3 | 6.7 | 7.2 | 6.4 | 6.6 | 7.2 | 6 | ||
Output | Display resolution | 7.5 | 6 | 7.5 | 6.5 | 7.2 | 6.6 | 6.8 | 7.3 | 6 | |
Device | Speakers | 7.4 | 6.1 | 7.1 | 6.4 | 7 | 6.3 | 6.5 | 7 | 6 | |
Sound | 7.3 | 6 | 7.4 | 6.3 | 7 | 6.7 | 7 | 7.2 | 5.7 | ||
Battery capacity | 7.2 | 6.2 | 7.1 | 6.7 | 6.9 | 6.7 | 6.6 | 7.2 | 6 | ||
Battery | Battery life | 7.3 | 6.4 | 6.8 | 6.4 | 7 | 7 | 6.5 | 7.2 | 5.9 | |
Performance | Talk time | 7.6 | 6.6 | 6.8 | 6.3 | 6.8 | 7.2 | 6.6 | 7.1 | 5.8 | |
Standby time | 7.4 | 6.7 | 7 | 6 | 6.6 | 7.3 | 6.7 | 7.3 | 5.5 | ||
Operating system | 7.3 | 6.3 | 7.5 | 6.4 | 6.9 | 6.6 | 6.8 | 6.9 | 6.2 | ||
User interface | 7 | 6.3 | 7.3 | 6.5 | 6.5 | 6.9 | 6.5 | 7.1 | 6.4 | ||
Systems | Drivers | 7.2 | 6.1 | 7.4 | 6.1 | 7.1 | 6.4 | 6.8 | 7.1 | 6.2 | |
Database mgmt | 7.8 | 6 | 7.5 | 6.2 | 6.9 | 6.7 | 6.8 | 6.9 | 6 | ||
Connectivity | 7.6 | 6.2 | 7.6 | 6 | 7.1 | 6.6 | 6.5 | 7 | 6.3 | ||
Download mgmt | 6.8 | 6.3 | 7.3 | 6.3 | 7.2 | 6.8 | 6.5 | 6.7 | 6.2 | ||
Word processing | 6.6 | 6.7 | 7 | 6.1 | 7.5 | 7 | 6.7 | 7.6 | 6.3 | ||
calendar | 6.7 | 6.3 | 7.2 | 6.3 | 7.3 | 7.1 | 6.7 | 7.5 | 6.1 | ||
Web browser | 6.7 | 6.9 | 7.5 | 6.6 | 7.4 | 7 | 6.7 | 7.1 | 6.1 | ||
Applied | Maps | 6.8 | 6.5 | 7.5 | 6.5 | 7.5 | 7 | 6.8 | 7.5 | 6.6 | |
Software | Clock | 7.2 | 6.5 | 7.5 | 6.5 | 7.4 | 6.7 | 6.6 | 7.4 | 6.3 | |
Input method | 6.5 | 6.7 | 7.6 | 6.3 | 7.3 | 6.8 | 6.5 | 7.4 | 6.5 | ||
Data synchronization | 7.2 | 6.7 | 7.3 | 6.6 | 7.4 | 6.9 | 6.8 | 7.2 | 6.4 | ||
Multimedia | 6.6 | 6.8 | 7.4 | 6.7 | 7.2 | 7.1 | 6.7 | 7.4 | 6.7 |
Attributes | Weight | Attributes | Weight |
---|---|---|---|
Smartphone Appearance | 0.1800 | Battery Performance | 0.1305 |
Mainboard | 0.1123 | Systems | 0.1105 |
Input Device | 0.2256 | Applied Software | 0.0845 |
Output Device | 0.1521 |
Brand | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Sj | 0.1286 | 0.9032 | 0.0383 | 0.7874 | 0.3172 | 0.4688 | 0.6330 | 0.1183 | 0.8744 |
Rj | 0.0501 | 0.2256 | 0.0373 | 0.1987 | 0.1414 | 0.1650 | 0.1414 | 0.0451 | 0.1650 |
Brand | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Qj | 0.0862 | 1.0000 | 0.0000 | 0.8616 | 0.4377 | 0.5880 | 0.6203 | 0.0669 | 0.8225 |
Brand | A | B | C | D | E | F | G | H | I | |
---|---|---|---|---|---|---|---|---|---|---|
Criteria | ||||||||||
Built-in function | 6.8 | 5 | 5.4 | 4.1 | 4.5 | 4 | 5.6 | 5.3 | 5.3 | |
Support expansion | 4.8 | 5.7 | 5.8 | 4.7 | 4.6 | 4 | 6.1 | 5.5 | 5 | |
Appearance design | 7.5 | 4.7 | 4.9 | 4.1 | 4.6 | 3.6 | 5.7 | 5.7 | 4.6 | |
System | 6.6 | 5.2 | 4.9 | 4.1 | 4.6 | 4 | 5.5 | 5.5 | 4.3 | |
Service | 7 | 5.2 | 4.3 | 4.3 | 4.1 | 3.9 | 4.9 | 4.9 | 4.2 | |
Camera and quality | 7.6 | 5 | 5.6 | 4.1 | 4.1 | 3.9 | 6.4 | 6.3 | 3.6 | |
Price | 4.2 | 6.2 | 4.9 | 4.2 | 4.1 | 4.5 | 5.5 | 4.8 | 6.2 | |
Video | 7.3 | 5 | 5.5 | 4.1 | 4.5 | 4.2 | 5.9 | 6.3 | 4.2 | |
Application | 6.8 | 5.1 | 5.2 | 4 | 4.4 | 3.8 | 5.8 | 5.4 | 4.7 |
Criteria | Weight |
---|---|
Built-in function | 0.0832 |
Support expansion | 0.0535 |
Appearance design | 0.1456 |
System | 0.0825 |
Service | 0.1095 |
Camera and quality | 0.2093 |
Price | 0.0821 |
Video | 0.1325 |
Application | 0.1020 |
Brand | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Ci | 0.3958 | 0.2513 | 0.2630 | 0.0785 | 0.1145 | 0.0407 | 0.3372 | 0.3220 | 0.1595 |
Item | Assessment Attributes | Order of Attribute | ROC Weight |
---|---|---|---|
1 | Function | 2 | 0.2708 |
2 | Brand image | 1 | 0.5208 |
3 | Average sales | 4 | 0.0625 |
4 | Word of mouth | 3 | 0.1458 |
Evaluation Attributes | Weight | Brand Average Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | ||
Function | 0.2708 | 91.38 | 0.00 | 100.00 | 13.84 | 56.23 | 41.20 | 37.97 | 93.31 | 17.75 |
Word of mouth | 0.1458 | 100.00 | 59.30 | 62.61 | 10.66 | 20.79 | 0.00 | 83.50 | 79.22 | 33.45 |
Brand image | 0.5208 | 100.00 | 25.00 | 87.50 | 12.50 | 50.00 | 0.00 | 75.00 | 62.50 | 37.50 |
Average sales | 0.0625 | 71.72 | 5.06 | 15.42 | 2.352 | 18.48 | 2.52 | 100.00 | 10.35 | 21.90 |
Total value | 95.8882 | 21.9822 | 82.7423 | 11.9591 | 45.4533 | 11.3145 | 68.0582 | 70.0155 | 30.5825 |
Brand | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Rank | 1 | 7 | 2 | 8 | 5 | 9 | 4 | 3 | 6 |
Item | Evaluation Attribute | Entropy Weight | ROC Weight | Average Weight |
---|---|---|---|---|
1 | Function | 0.3384 | 0.2708 | 0.2652 |
2 | Brand image | 0.2595 | 0.5208 | 0.4296 |
3 | Average sales | 0.0677 | 0.0625 | 0.1067 |
4 | Word of mouth | 0.3344 | 0.1458 | 0.1985 |
Evaluation Attribute | Weight | Average Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | ||
Function | 0.2652 | 91.38 | 0.00 | 100.00 | 13.84 | 56.23 | 41.20 | 37.97 | 93.31 | 17.75 |
Word of mouth | 0.1985 | 100.00 | 59.30 | 62.61 | 10.66 | 20.79 | 0.00 | 83.50 | 79.22 | 33.45 |
Brand image | 0.4296 | 100.00 | 25.00 | 87.50 | 12.50 | 50.00 | 0.00 | 75.00 | 62.50 | 37.50 |
Average sales | 0.1067 | 71.72 | 5.06 | 15.42 | 2.352 | 18.48 | 2.52 | 100.00 | 10.35 | 21.90 |
Total value | 94.6965 | 23.0510 | 78.1834 | 11.4073 | 42.4908 | 11.1951 | 69.9314 | 68.4253 | 29.7939 |
Brand | A | B | C | D | E | F | G | H | I |
---|---|---|---|---|---|---|---|---|---|
Rank | 1 | 7 | 2 | 8 | 5 | 9 | 3 | 4 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-Y.; Li, L.; Tsaur, R.-C. Smartphone Market Analysis with Respect to Brand Performance Using Hybrid Multicriteria Decision Making Methods. Mathematics 2022, 10, 1861. https://doi.org/10.3390/math10111861
Huang Y-Y, Li L, Tsaur R-C. Smartphone Market Analysis with Respect to Brand Performance Using Hybrid Multicriteria Decision Making Methods. Mathematics. 2022; 10(11):1861. https://doi.org/10.3390/math10111861
Chicago/Turabian StyleHuang, Yin-Yin, Liwei Li, and Ruey-Chyn Tsaur. 2022. "Smartphone Market Analysis with Respect to Brand Performance Using Hybrid Multicriteria Decision Making Methods" Mathematics 10, no. 11: 1861. https://doi.org/10.3390/math10111861
APA StyleHuang, Y.-Y., Li, L., & Tsaur, R.-C. (2022). Smartphone Market Analysis with Respect to Brand Performance Using Hybrid Multicriteria Decision Making Methods. Mathematics, 10(11), 1861. https://doi.org/10.3390/math10111861