The Properties of Harmonically cr-h-Convex Function and Its Applications
Abstract
:1. Introduction
2. Preliminaries and Basic Results
3. Harmonically --Convex Function and Jensen Type Inequality
4. Hermite-Hadamard Type Inequalities and Fejér Type Inequalities of Harmonically --Convex Functions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moore, R.E. Interval Analysis; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Snyder, J. Interval analysis for computer graphics. SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
- Weerdt, E.; Chu, Q.; Mulder, A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Wang, L.; Qiu, Z. A feasible implementation procedure for interval analysis method from measurement data. Appl. Math. Model. 2014, 38, 2377–2397. [Google Scholar] [CrossRef]
- Bombardelli, M.; Varošanec, S. Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 2009, 58, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- Chen, F. Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals. Appl. Math. Comput. 2015, 268, 121–128. [Google Scholar] [CrossRef]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.; Noor, K.; Awan, M.; Costache, S. Some integral inequalities for harmonically h-convex functions. Politeh. Univ. Bucharest Sci. Bull. Ser. A. Appl. Math. Phys. 2015, 77, 5–16. [Google Scholar]
- Mihai, M.; Noor, M.; Noor, K.; Awan, M. Some integral inequalities for harmonic h-convex functions involving hypergeometric functions. Appl. Math. Comput. 2015, 252, 257–262. [Google Scholar] [CrossRef]
- Flores-Franulič, A.; Chalco-Cano, Y.; Román-Flores, H. An Ostrowski type inequality for interval-valued functions. In Proceedings of the IFSA World Congress and NAFIPS Annual Meeting IEEE, Edmonton, AB, Canada, 24–28 June 2013; pp. 1459–1462. [Google Scholar]
- Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2016, 35, 1306–1318. [Google Scholar] [CrossRef]
- Costa, T.; Román-Flores, H.; Chalco-Cano, Y. Opial-type inequalities for interval-valued functions. Fuzzy Sets Syst. 2019, 358, 48–63. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 472–475. [Google Scholar]
- Zhao, D.; An, T.; Ye, G.; Torres, D.F.M. On Hermite-Hadamard type inequalities for harmonically h-convex interval-valued functions. Math. Inequal. Appl. 2020, 23, 95–105. [Google Scholar]
- Wannalookkhee, F.; Nonlaopon, K.; Ntouyas, S.K.; Sarikaya, M.Z.; Budak, H.; Ali, M.A. Some New Quantum Hermite-Hadamard Inequalities for Co-Ordinated Convex Functions. Mathematics 2022, 10, 1962. [Google Scholar] [CrossRef]
- Luangboon, W.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Budak, H. Some (p, q)-Integral Inequalities of Hermite-Hadamard Inequalities for (p, q)-Differentiable Convex Functions. Mathematics 2022, 10, 826. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Treanţǎ, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Luangboon, W.; Budak, H.; Nonlaopon, K. Some Generalizations of Different Types of Quantum Integral Inequalities for Differentiable Convex Functions with Applications. Fractal Fract. 2022, 6, 129. [Google Scholar] [CrossRef]
- Bhunia, A.; Samanta, S. A study of interval metric and its application in multi-objective optimization with interval objectives. Comput. Ind. Eng. 2014, 74, 169–178. [Google Scholar] [CrossRef]
- Rahman, M.; Shaikh, A.; Bhunia, A. Necessary and sufficient optimality conditions for non-linear unconstrained and constrained optimization problem with interval valued objective function. Comput. Ind. Eng. 2020, 147, 106634. [Google Scholar] [CrossRef]
- Markov, S. Calculus for interval functions of a real variable. Computing 1979, 22, 325–337. [Google Scholar] [CrossRef]
- Shi, F.; Ye, G.; Zhao, D.; Liu, W. cr-h-convexity and some inequalities for cr-h-convex functions. Filomat, 2022; submitted. [Google Scholar]
- Baloch, I.; Mughal, A.; Chu, Y.; Haq, A.; De La Sen, M. A variant of Jensen-type inequality and related results for harmonic convex functions. AIMS Math. 2020, 5, 6404–6418. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Shi, F.; Ye, G.; Zhao, D. The Properties of Harmonically cr-h-Convex Function and Its Applications. Mathematics 2022, 10, 2089. https://doi.org/10.3390/math10122089
Liu W, Shi F, Ye G, Zhao D. The Properties of Harmonically cr-h-Convex Function and Its Applications. Mathematics. 2022; 10(12):2089. https://doi.org/10.3390/math10122089
Chicago/Turabian StyleLiu, Wei, Fangfang Shi, Guoju Ye, and Dafang Zhao. 2022. "The Properties of Harmonically cr-h-Convex Function and Its Applications" Mathematics 10, no. 12: 2089. https://doi.org/10.3390/math10122089
APA StyleLiu, W., Shi, F., Ye, G., & Zhao, D. (2022). The Properties of Harmonically cr-h-Convex Function and Its Applications. Mathematics, 10(12), 2089. https://doi.org/10.3390/math10122089