Summation Formulae for Quintic q-Series
Abstract
:1. Introduction and Motivation
2. Identities for the -Series
2.1. Transformation from to
2.2. Case
2.3. Case
3. Closed Formulae for the -Series
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chu, W. Basic hypergeometric identities: An introductory revisiting through the Carlitz inversions. Forum Math. 1995, 7, 117–129. [Google Scholar]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Gessel, I.; Stanton, D. Applications of q-Lagrange inversion to basic hypergeometric series. Trans. Am. Math. Soc. 1983, 277, 173–201. [Google Scholar]
- Bressoud, D.M. Some identities for terminating q-series. Math. Proc. Cambridge Philos. Soc. 1981, 89, 211–223. [Google Scholar] [CrossRef]
- Bressoud, D.M. An easy proof of the Rogers–Ramanujan identities. J. Combin. Theory Ser. A 1983, 16, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.H. Triple product identity, quintuple product identity and Ramanujan’s differential equations for the classical Eisenstein series. Proc. Am. Math. Soc. 2007, 135, 1987–1992. [Google Scholar] [CrossRef] [Green Version]
- Chan, H.H.; Liu, Z.G.; Ng, S.T. Elliptic functions and the quintuple, Hirschhorn and Winquist product identities. Int. J. Number. Theory 2005, 1, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Gessel, I.; Xin, G.C. A short proof of the Zeilberger–Bressoud q-Dyson theorem. Proc. Am. Math. Soc. 2006, 134, 2179–2187. [Google Scholar] [CrossRef]
- Stanton, D. q-Analogues of Euler’s Odd = Distinct theorem. Ramanujan J. 2009, 19, 107–113. [Google Scholar] [CrossRef]
- Andrews, G.E. The Theory of Partitions; Cambridge University Press: Cambridge, UK, 1976. [Google Scholar]
- Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 5th ed.; Oxford Science Publications: Oxford, UK, 1980. [Google Scholar]
- Andrews, G.E. q-series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra; CBMS Regional Conference Series in Mathematics 66; American Mathematical Society: Providence, RI, USA, 1986. [Google Scholar]
- Baxter, R.J. Exactly Solved Models in Statistical Mechanics; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Berndt, B.C.; Ono, K. q-series with Applications to Combinatorics, Number Theory, and Physics; American Mathematical Society: Providence, RI, USA, 2001. [Google Scholar]
- Chu, W. Abel’s lemma on summation by parts and Ramanujan’s 1ψ1-series identity. Aequationes Math. 2006, 72, 172–176. [Google Scholar] [CrossRef]
- Chu, W. Bailey’s very well–poised 6ψ6-series identity. J. Combin. Theory Ser. A 2006, 113, 966–979. [Google Scholar] [CrossRef] [Green Version]
- Chu, W. Abel’s method on summation by parts and bilateral well–poised 5ψ5-series identities. Port. Math. 2009, 66, 275–302. [Google Scholar] [CrossRef]
- Chu, W.; Jia, C. Abel’s method on summation by parts and terminating well–poised q-series identities. J. Comput. Appl. Math. 2007, 207, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Gasper, G. Summation, transformation, and expansion formulas for bibasic series. Trans. Am. Math. Soc. 1989, 312, 257–277. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. An indefinite bibasic summation formula and some quadratic, cubic and quartic summation and transformation formulas. Canad. J. Math. 1990, 42, 1–27. [Google Scholar] [CrossRef]
- Rahman, M. Some quadratic and cubic summation formulas for basic hypergeometric series. Canad. J. Math. 1993, 45, 394–411. [Google Scholar] [CrossRef]
- Rahman, M.; Verma, A. Quadratic transformation formulas for basic hypergeometric series. Trans. Am. Math. Soc. 1993, 335, 277–302. [Google Scholar] [CrossRef]
- Rahman, M. Some cubic summation formulas for basic hypergeometric series. Utilitas Math. 1989, 36, 161–172. [Google Scholar] [CrossRef]
- Chu, W.; Wang, C. Abel’s Lemma on summation by parts and partial q-series transformations. Sci. China Math. (Engl.) 2009, 52, 720–748, Sci. China Math. (Chin.)2009, 39, 405–432. [Google Scholar] [CrossRef]
- Chu, W.; Jia, C. Quartic theta hypergeometric series. Ramanujan J. 2013, 32, 23–81. [Google Scholar] [CrossRef]
- Chu, W.; Wang, C. Partial sums of two quartic q-series SIGMA: Symmetry Integrability. Geom. Methods Appl. 2009, 5, 19. [Google Scholar]
- Chu, W. Inversion techniques and combinatorial identities: Jackson’s q-analogue of the Dougall–Dixon theorem and the dual formulae. Compos. Math. 1995, 95, 43–68. [Google Scholar]
- Chu, W. Summation formulae for twisted cubic q-series. Math. Methods Appl. Sci. 2019, 42, 1831–1843. [Google Scholar] [CrossRef]
- Chu, W. Abel’s lemma on summation by parts and basic hypergeometric series. Adv. Appl. Math. 2007, 39, 490–514. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.; Wang, X. Abel’s lemma on summation by parts and terminating q-series identities. Numer. Alg. 2008, 49, 105–128. [Google Scholar] [CrossRef]
- Chu, W.; Zhang, W. Abel’s method on summation by parts and nonterminating q-series identities. Collect. Math. 2009, 60, 193–211. [Google Scholar] [CrossRef]
- Stromberg, K.R. An Introduction to Classical Real Analysis; Wadsworth, INC.: Belmont, CA, USA, 1981. [Google Scholar]
- Bailey, W.N. Generalized Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1935. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, W. Summation Formulae for Quintic q-Series. Mathematics 2022, 10, 2210. https://doi.org/10.3390/math10132210
Chu W. Summation Formulae for Quintic q-Series. Mathematics. 2022; 10(13):2210. https://doi.org/10.3390/math10132210
Chicago/Turabian StyleChu, Wenchang. 2022. "Summation Formulae for Quintic q-Series" Mathematics 10, no. 13: 2210. https://doi.org/10.3390/math10132210
APA StyleChu, W. (2022). Summation Formulae for Quintic q-Series. Mathematics, 10(13), 2210. https://doi.org/10.3390/math10132210