Bézier-Summation-Integral-Type Operators That Include Pólya–Eggenberger Distribution
Abstract
:1. Introduction and Preliminaries
2. Bézier-Summation-Integral-Type Operators and Auxiliary Results
3. Direct and Quantitative Voronovskaja-Type Results
4. Rate of Convergence
- (i)
- (ii)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stancu, D.D. Approximation of functions by a new class of linear polynomial operators. Rev. Roumaine Math. Pures Appl. 1968, 13, 1173–1194. [Google Scholar]
- Bernstein, S.N. Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Charkov 1912, 13, 1–2. [Google Scholar]
- Lupaş, L.; Lupaş, A. Polynomials of binomial type and approximation operators. Studia Univ. Babeş-Bolyai Math. 1987, 32, 61–69. [Google Scholar]
- Miclăuş, D. The revision of some results for Bernstein-Stancu type operators. Carpathian J. Math. 2012, 28, 289–300. [Google Scholar] [CrossRef]
- Miclăuş, D. On the monotonicity property for the sequence of Stancu type polynomials. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 2016, 62, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Voronovskaja, E. Détermination de la forme asyptotique d’approximation des fonctions par les polynômes de M. Bernstein. CR Acad. Sci. URSS 1932, 79, 79–85. [Google Scholar]
- Cárdenas-Morales, D.; Gupta, V. Two families of Bernstein-Durrmeyer type operators. Appl. Math. Comput. 2014, 248, 342–353. [Google Scholar] [CrossRef]
- Gupta, V.; Acu, A.M.; Sofonea, D.F. Approximation of Baskakov type Pólya-Durrmeyer operators. Appl. Math. Comput. 2017, 294, 318–331. [Google Scholar] [CrossRef]
- Gupta, V.; Rassias, T.M. Lupaş-Durrmeyer operators based on Pólya distribution. Banach J. Math. Anal. 2014, 8, 145–155. [Google Scholar] [CrossRef]
- Agrawal, P.N.; Ispir, N.; Kajla, A. Approximation properties of Bézier-summation-integral type operators based on Pólya-Bernstein functions. Appl. Math. Comput. 2015, 259, 533–539. [Google Scholar] [CrossRef]
- Agrawal, P.N.; Ispir, N.; Kajla, A. GBS operators of Lupaş-Durrmeyer type based on Pólya distribution. Results Math. 2016, 69, 397–418. [Google Scholar] [CrossRef]
- Razi, Q. Approximation of a function by Kantorovich type operators. Mat. Vesnik 1989, 41, 183–192. [Google Scholar]
- Wang, M.; Yu, D.; Zhou, P. On the approximation by operators of Bernstein-Stancu types. Appl. Math. Comput. 2014, 246, 79–87. [Google Scholar] [CrossRef]
- Finta, Z. Direct and converse results for Stancu operator. Period. Math. Hungar. 2002, 44, 1–6. [Google Scholar] [CrossRef]
- Finta, Z. On approximation properties of Stancu’s operators. Studia Univ. Babeş-Bolyai Math. 2002, 47, 47–55. [Google Scholar]
- Deo, N.; Dhamija, M.; Miclăuş, D. Stancu-Kantorovich operators based on inverse Pólya-Eggenberger distribution. Appl. Math. Comput. 2016, 273, 281–289. [Google Scholar] [CrossRef]
- Abel, U.; Ivan, M.; Păltănea, R. The Durrmeyer variant of an operator defined by D. D. Stancu. Appl. Math. Comput. 2015, 259, 116–123. [Google Scholar] [CrossRef]
- Kajla, A.; Mohiuddine, S.A.; Alotaibi, A. Blending-type approximation by Lupaş-Durrmeyer-type operators involving Pólya distribution. Math. Meth. Appl. Sci. 2021, 44, 9407–9418. [Google Scholar] [CrossRef]
- Păltănea, R. A class of Durrmeyer type operators preserving linear functions. Ann. Tiberiu Popoviciu Semin. Funct. Eq. Approx. Convexity 2007, 5, 109–118. [Google Scholar]
- Gonska, H.; Păltănea, R. Simultaneous approximation by a class of Bernstein-Durrmeyer operators preserving linear functions. Czech. Math. J. 2010, 60, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Kajla, A.; Miclăuş, D. Approximation by Stancu-Durrmeyer type operators based on Pólya-Eggenberger distribution. Filomat 2018, 32, 4249–4261. [Google Scholar] [CrossRef] [Green Version]
- Bézier, P. Numerical Control Mathematics and Applications; Wiley: London, UK, 1972. [Google Scholar]
- Chang, G. Generalized Bernstein-Bézier polynomials. J. Comput. Math. 1983, 1, 322–327. [Google Scholar]
- Zeng, X.-M. On the rate of convergence of two Bernstein-Bezier type operators for bounded variation functions II. J. Approx. Theory 2000, 104, 330–344. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.; Agrawal, P.N. Bézier variant of the Jakimovski-Leviatan-Paltanea operators based on Appell polynomials. Ann. Univ. Ferrara 2017, 63, 289–302. [Google Scholar] [CrossRef]
- Mursaleen, M.; Rahman, S.; Ansari, K.J. On the approximation by Bézier-Pǎltǎnea operators based on Gould-Hopper polynomials. Math. Commun. 2019, 24, 147–164. [Google Scholar]
- Guo, S.; Jiang, H.; Qi, Q. Approximation by Bézier type of Meyer-König and Zeller operators. Comput. Math. Appl. 2007, 54, 1387–1394. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Qi, Q.; Liu, G. The central approximation theorems for Baskakov-Bézier operators. J. Approx. Theory 2007, 174, 112–124. [Google Scholar] [CrossRef] [Green Version]
- Ispir, N.; Yuksel, I. On the Bézier variant of Srivastava-Gupta operators. Appl. Math. E-Notes 2005, 5, 129–137. [Google Scholar]
- Kajla, A. On the Bézier variant of the Srivastava-Gupta operators. Constr. Math. Anal. 2018, 1, 99–107. [Google Scholar] [CrossRef]
- Karsli, H.; Ibikli, E. Convergence rate of a new Bézier variant of Chlodowsky operators to bounded variation functions. J. Comput. Appl. Math. 2008, 212, 431–443. [Google Scholar] [CrossRef] [Green Version]
- Pych-Taberska, P. Some properties of the Bézier-Kantorovich type operators. J. Approx. Theory 2003, 123, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Gupta, V. Rate of convergence for the Bézier variant of the Bleimann-Butzer-Hahn operators. Appl. Math. Lett. 2005, 18, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Acar, T.; Agrawal, P.N.; Neer, T. Bézier variant of the Bernstein-Durrmeyer type operators. Results. Math. 2017, 72, 1341–1358. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, Y. A new estimate on the rate of convergence of Durrmeyer-Bézier Operators. J. Inequal. Appl. 2009, 2009, 702680. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.-M. Approximation by Bézier variants of the BBHK operators. Appl. Math. Lett. 2007, 20, 806–812. [Google Scholar] [CrossRef] [Green Version]
- Korovkin, P. Linear operators and approximation theory, Translated from the 1959 Russian Edition. In Russian Monographs and Texts on Advanced Mathematics and Physics; Gordon and Breach Publishers, Inc.: New York, NY, USA; Hindustan Publishing Corp.: Delhi, India, 1960; Volume 3. [Google Scholar]
- May, C.P. Saturation and inverse theorems for combinations of a class of exponential-type operators. Canadian J. Math. 1976, 28, 1224–1250. [Google Scholar] [CrossRef]
- Costabile, F.; Gualtieri, M.I.; Napoli, A. Some results on generalized Szász operators involving Sheffer polynomials. J. Comput. Appl. Math. 2018, 337, 244–255. [Google Scholar] [CrossRef]
- Costabile, F.; Gualtieri, M.I.; Serra-Capizzano, S. Asymptotic expansion and extrapolation for Bernstein polynomials with applications. Bit Numer. Math. 1996, 36, 676–687. [Google Scholar] [CrossRef]
- López-Moreno, A.-J.; Muñoz-Delgado, F.-J. Asymptotic expansion of multivariate Kantorovich type operators. Numer. Algor. 2005, 39, 237–252. [Google Scholar] [CrossRef]
- Acar, T.; Kajla, A. Blending type approximation by Bézier-summation-integral type operators. Commun. Fac. Sci., Univ. Ank. Ser. A1 Math. Stat. 2018, 66, 195–208. [Google Scholar]
- Goyal, M.; Agrawal, P.N. Bézier variant of the generalized Baskakov-Kantorovich operators. Boll. Unione Mat. Ital. 2016, 8, 229–238. [Google Scholar] [CrossRef]
- Gupta, V.; Ivan, M. Rate of simultaneous approximation for the Bézier variant of certain operators. Appl. Math. Comput. 2008, 199, 392–395. [Google Scholar] [CrossRef]
- Kajla, A.; Acar, T. Bézier-Bernstein-Durrmeyer type operators. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 2020, 114, 31. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Acar, T.; Alotaibi, A. Construction of a new family of Bernstein-Kantorovich operators. Math. Meth. Appl. Sci. 2017, 40, 7749–7759. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Özger, F. Approximation of functions by Stancu variant of Bernstein-Kantorovich operators based on shape parameter α. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 2020, 114, 70. [Google Scholar] [CrossRef]
- Özger, F.; Srivastava, H.M.; Mohiuddine, S.A. Approximation of functions by a new class of generalized Bernstein-Schurer operators. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. RACSAM 2020, 114, 173. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Ahmad, N.; Özger, F.; Alotaibi, A.; Hazarika, B. Approximation by the parametric generalization of Baskakov-Kantorovich operators linking with Stancu operators. Iran. J. Sci. Technol. Trans. Sci. 2021, 45, 593–605. [Google Scholar] [CrossRef]
- Ditzian, Z.; Totik, V. Moduli of Smoothness; Springer: New York, NY, USA, 1987. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohiuddine, S.A.; Kajla, A.; Alotaibi, A. Bézier-Summation-Integral-Type Operators That Include Pólya–Eggenberger Distribution. Mathematics 2022, 10, 2222. https://doi.org/10.3390/math10132222
Mohiuddine SA, Kajla A, Alotaibi A. Bézier-Summation-Integral-Type Operators That Include Pólya–Eggenberger Distribution. Mathematics. 2022; 10(13):2222. https://doi.org/10.3390/math10132222
Chicago/Turabian StyleMohiuddine, Syed Abdul, Arun Kajla, and Abdullah Alotaibi. 2022. "Bézier-Summation-Integral-Type Operators That Include Pólya–Eggenberger Distribution" Mathematics 10, no. 13: 2222. https://doi.org/10.3390/math10132222
APA StyleMohiuddine, S. A., Kajla, A., & Alotaibi, A. (2022). Bézier-Summation-Integral-Type Operators That Include Pólya–Eggenberger Distribution. Mathematics, 10(13), 2222. https://doi.org/10.3390/math10132222