Granular Elastic Network Regression with Stochastic Gradient Descent
Abstract
:1. Introduction
2. Granulation
3. Granular Elastic Network Regression
3.1. Granular Operations and Measures
3.2. Granular Elasticity Regression Model
3.3. Granular Elastic Network Optimization Algorithm
Algorithm 1 Granular elastic network optimization algorithm |
Input: The training set is , where is the feature vector, , is the regression decision vector ; the learning rate is , and the number of iterations m Output: Granular weight matrix W. (1) The sample set X is granularized over the feature set to obtain (2) The decision set Y is extended granularly as (3) Construct a granular elastic network and randomly initialize the granular weights in the network (4) i = 0 (5) for i to m (6) (7) (8) (9) (10) if (11) break |
4. Experimental Analysis
4.1. Convergence Analysis
4.2. α and β Penalty Coefficient Proportional Impacts
4.3. Fitting Analysis
4.4. Comparison of Granular Elastic Network Regression and Classical Regression Algorithms
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets and information granularity. Adv. Fuzzy Set Theory Appl. 1979, 11, 3–18. [Google Scholar]
- Hobbs, J.R. Granularity. In Proceedings of the IJCAI, Los Angeles, CA, USA, 18–23 August 1985; pp. 432–435. [Google Scholar]
- Zadeh, L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 1997, 90, 111–127. [Google Scholar] [CrossRef]
- Lin, T.Y. Data Mining: Granular Computing Approach. Lect. Notes Comput. Sci. 1999, 1574, 24–33. [Google Scholar]
- Lin, T.Y.; Zadeh, L.A. Special issue on granular computing and data mining. Int. J. Intell. Syst. 2004, 19, 565–566. [Google Scholar] [CrossRef]
- Bazan, J.G.; Nguyen, H.S.; Nguyen, S.H.; Synak, P.; Wróblewski, J. Rough Set Algorithms in Classification Problem. In Rough Set Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2000; pp. 49–88. [Google Scholar]
- Liu, Q.; Jiang, S.L. Reasoning about information granules based on rough logic. Lect. Notes Comput. Sci. 2002, 2475, 139–143. [Google Scholar]
- Yao, Y. Information granulation and rough set approximation. Int. J. Intell. Syst. 2001, 16, 87–104. [Google Scholar] [CrossRef] [Green Version]
- Miao, D.Q.; Fan, S. The calculation of knowledge granulation and its application. Syst. Eng.-Theory Pract. 2002, 22, 48–56. [Google Scholar]
- Miao, D.Q.; Xu, F.F.; Yao, Y.Y.; Wei, L. Set-theoretic formulation of granular computing. Chin. J. Comput. 2012, 35, 351–363. [Google Scholar] [CrossRef]
- Wang, G.Y.; Zhang, Q.H.; Ma, X.A.; Yang, Q.S. Granular computing models for knowledge uncertainty. J. Softw. 2011, 22, 676–694. [Google Scholar] [CrossRef]
- Chen, Y.; Miao, D.Q.; Wang, R.; Wu, K. A rough set approach to feature selection based on power set tree. Knowl.-Based Syst. 2011, 24, 275–281. [Google Scholar] [CrossRef]
- Qian, J.; Miao, D.; Zhang, Z.; Yue, X. Parallel attribute reduction algorithms using MapReduce. Inform. Sci. 2014, 279, 671–690. [Google Scholar] [CrossRef]
- Chen, Y.M.; Qin, N.; Li, W.; Xu, F.F. Granule structures, distances and measures in neighborhood systems. Knowl.-Based Syst. 2019, 165, 268–281. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.M.; Song, Y.P. Boosted K-nearest neighbor classifiers based on fuzzy granules. Knowl.-Based Syst. 2020, 195, 105–606. [Google Scholar] [CrossRef]
- Chiaselotti, G.; Gentile, T.; Infusino, F. Granular computing on information tables: Families of subsets and operators. Inform. Sci. 2018, 442, 72–102. [Google Scholar] [CrossRef]
- Lei, T.; Jia, X.; Zhang, Y.; Liu, S.; Meng, H.; Nandi, A.K. Superpixel-Based Fast Fuzzy C-Means Clustering for Color Image Segmentation. IEEE Trans. Fuzzy Syst. 2019, 27, 1753–1766. [Google Scholar] [CrossRef] [Green Version]
- Fujita, H.; Gaeta, A.; Loia, V.; Orciuoli, F. Resilience analysis of critical infrastructures: A cognitive approach based on granular computing. IEEE Trans. Cybern. 2019, 49, 1835–1848. [Google Scholar] [CrossRef]
- Chen, Y.M.; Miao, D.Q.; Wang, R.Z. A rough set approach to feature selection based on ant colony optimization. Pattern Recognit. Lett. 2010, 31, 226–233. [Google Scholar] [CrossRef]
- Hu, Q.H.; Yu, D.R.; Liu, J.F.; Wu, C.X. Neighborhood rough set based heterogeneous feature subset selection. Inf. Sci. 2008, 178, 3577–3594. [Google Scholar] [CrossRef]
- Li, D.F. TOPSIS-based nonlinear-programming methodology for multiattribute decision making with interval-valued intuitionistic fuzzy sets. IEEE Trans. Fuzzy Syst. 2018, 26, 391. [Google Scholar] [CrossRef]
- Lin, G.P.; Liang, J.Y.; Li, J.J. A fuzzy multigranulation decision-theoretic approach to multi-source fuzzy information systems. Knowl.-Based Syst. 2016, 91, 102–113. [Google Scholar] [CrossRef]
- Mendel, J.M.; Bonissone, P.P. Critical Thinking about Explainable AI (XAI) for Rule-Based Fuzzy Systems. IEEE Trans. Fuzzy Syst. 2021, 29, 3579–3593. [Google Scholar] [CrossRef]
- Cosme, L.B.; Caminhas, W.M.; Dangelo, M.F.; Palhares, R.M. A novel fault-prognostic approach based on interacting multiple model filters and fuzzy systems. IEEE Trans. Ind. Electron. 2018, 66, 519–528. [Google Scholar] [CrossRef]
- Wang, L.; Dong, J. Adaptive Fuzzy Consensus Tracking Control for Uncertain Fractional-Order Multiagent Systems With Event-Triggered Input. IEEE Trans. Fuzzy Syst. 2022, 30, 310–320. [Google Scholar] [CrossRef]
- Hu, H.; Pang, L.; Tian, D.; Shi, Z. Perception granular computing in visual haze-free task. Expert Syst. Appl. 2014, 41, 2729–2741. [Google Scholar] [CrossRef]
- Naseem, I.; Togneri, R.; Bennamoun, M. Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 2106–2112. [Google Scholar] [CrossRef]
- Chen, Y.R.; Rezapour, A.; Tzeng, W.G. Privacy-preserving ridge regression on distributed data. Inf. Sci. 2018, 451, 34–49. [Google Scholar] [CrossRef]
- Tibshirani, R.J. Regression shrinkage and selection via the LASSO. J. R. Statist. Soc. 1996, 73, 273–282. [Google Scholar] [CrossRef]
- Zhang, Z.; Lai, Z.; Xu, Y.; Shao, L.; Wu, J.; Xie, G.S. Discriminative elastic-net regularized linear regression. IEEE Trans. Image Process. 2017, 26, 1466–1481. [Google Scholar] [CrossRef] [Green Version]
X | a | b | c | D |
---|---|---|---|---|
1 | 0.5 | 0.6 | 22.5 | |
0.35 | 0.4 | 0.5 | 33 | |
0.4 | 1 | 0.9 | 45 | |
0.7 | 0.7 | 0.1 | 10.05 |
Datasets | Linear Regression | Ridge | Lasso | Elastic Network | Granular Elastic Network |
---|---|---|---|---|---|
Concrete | 8.1142 | 8.0997 | 8.0997 | 8.0978 | 4.3481 |
Estate | 6.2929 | 6.2205 | 6.2284 | 6.2346 | 5.1689 |
QSAR | 0.777 | 0.769 | 0.7765 | 0.7727 | 0.7911 |
Airfoil | 3.5452 | 3.5472 | 3.5477 | 3.5621 | 3.2883 |
Ale | 0.223 | 0.2217 | 0.2179 | 0.2169 | 0.1471 |
Slump | 2.7413 | 2.7503 | 2.7543 | 2.7615 | 1.9253 |
Daliy demand | 71.8545 | 80.9481 | 71.8734 | 77.0038 | 85.7092 |
Boston | 3.9358 | 3.926 | 3.917 | 3.8874 | 3.0508 |
Energy | 2.2216 | 2.2439 | 2.2582 | 2.3377 | 0.9997 |
Yacht | 8.3883 | 7.581 | 8.3399 | 7.462 | 1.9873 |
Datasets | Linear Regression | Ridge | Lasso | Elastic Network | Granular Elastic Network |
---|---|---|---|---|---|
Concrete | 0.3937 | 0.3904 | 0.3929 | 0.3906 | 0.8842 |
Estate | 0.5289 | 0.4995 | 0.5128 | 0.5059 | 0.6303 |
QSAR | 0.3637 | 0.331 | 0.3626 | 0.3499 | 0.4113 |
Airfoil | 0.1676 | 0.1621 | 0.1598 | 0.1257 | 0.3566 |
Ale | 0.1009 | 0.0937 | 0.1011 | 0.0829 | 0.7212 |
Slump | 0.791 | 0.7865 | 0.7926 | 0.7816 | 0.9125 |
Daliy demand | 0.5698 | 0.4637 | 0.5692 | 0.4466 | 0.3353 |
Boston | 0.3531 | 0.3455 | 0.3437 | 0.3029 | 0.5521 |
Energy | 0.893 | 0.8917 | 0.8906 | 0.8749 | 0.9844 |
Yacht | 0.2779 | −0.1795 | 0.2705 | −1.3873 | 0.9299 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, L.; Chen, Y.; Zhong, C.; Wu, K. Granular Elastic Network Regression with Stochastic Gradient Descent. Mathematics 2022, 10, 2628. https://doi.org/10.3390/math10152628
He L, Chen Y, Zhong C, Wu K. Granular Elastic Network Regression with Stochastic Gradient Descent. Mathematics. 2022; 10(15):2628. https://doi.org/10.3390/math10152628
Chicago/Turabian StyleHe, Linjie, Yumin Chen, Caiming Zhong, and Keshou Wu. 2022. "Granular Elastic Network Regression with Stochastic Gradient Descent" Mathematics 10, no. 15: 2628. https://doi.org/10.3390/math10152628
APA StyleHe, L., Chen, Y., Zhong, C., & Wu, K. (2022). Granular Elastic Network Regression with Stochastic Gradient Descent. Mathematics, 10(15), 2628. https://doi.org/10.3390/math10152628