Hybrid Deep Learning Applied on Saudi Smart Grids for Short-Term Load Forecasting
Abstract
:1. Introduction
- An SG planning model of Saudi cities, which increases the planning and control progress and meets the planning of future Saudi load demands, is proposed.
- A load-forecasting technique based on hybrid DL algorithms is applied to predict the expected load growth.
- The hybrid DL algorithms of the time-series forecasting is adopted to solve the problem.
- The Saudi SGs of Jeddah and Madinah are investigated according to their different loads and characteristics.
2. Literature Review
3. Forecasting Methods
3.1. Artificial Neural Networks
3.2. Convolutional Neural Networks
3.3. Recurrent Neural Network (RNN)
3.4. Long-Short Term Memory (LSTM)
3.5. Gate Recurrent Unit (GRU)
3.6. Bidirectional Long Short-Term Memory (BiLSTM)
4. Forecasting Modeling
4.1. Data Description
4.2. Hybrid DL Approach
5. Results
6. Conclusions, Limitations, and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kousar, S.; Zafar, N.A.; Ali, T.; Alkhammash, E.H.; Hadjouni, M. Formal Modeling of IoT-Based Distribution Management System for Smart Grids. Sustainability 2022, 14, 4499. [Google Scholar] [CrossRef]
- Ahssein, Y.H.; Amran, Y.H.; Amran, M.; Alyousef, R.; Alabduljabbar, H. Renewable and sustainable energy production in Saudi Arabia according to Saudi Vision 2030; Current status and future prospects. J. Clean. Prod. 2020, 247, 119602. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The Mit Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Erol-Kantarci, M.; Mouftah, H.T. Wireless multimedia sensor and actor networks for the next generation power grid. Ad Hoc Netw. 2011, 9, 542–551. [Google Scholar] [CrossRef]
- Feinberg, E.; Genethliou, D. Load Pocket Modeling. Available online: https://www.semanticscholar.org/paper/LOAD-POCKET-MODELING-Feinberg-Genethliou/db8d19c9e66b8b8e80cbbe88400a90a53eebee32 (accessed on 5 June 2022).
- Almalaq, A.; Edwards, G. A Review of Deep Learning Methods Applied on Load Forecasting. Available online: https://ieeexplore.ieee.org/document/8260682 (accessed on 5 June 2022).
- Jurgenson, S.; Bayyari, F.M.; Parker, J. A comprehensive renewable energy program for Saudi Vision 2030. Renew. Energy Focus 2016, 17, 182–183. [Google Scholar] [CrossRef]
- Moshashai, D.; Leber, A.M.; Savage, J.D. Saudi Arabia plans for its economic future: Vision 2030, the National Transformation Plan and Saudi fiscal reform. Br. J. Middle East. Stud. 2018, 47, 381–401. [Google Scholar] [CrossRef]
- Bedi, J.; Toshniwal, D. Deep learning framework to forecast electricity demand. Appl. Energy 2019, 238, 1312–1326. [Google Scholar] [CrossRef]
- Feinberg, E.A.; Genethliou, D. Load Forecasting. In Power Electronics and Power Systems; Metzler, J.B., Ed.; Springer: Boston, MA, USA, 2006; pp. 269–285. [Google Scholar]
- Alsaedi, Y.H.; Tularam, G.A. The relationship between electricity consumption, peak load and GDP in Saudi Arabia: A VAR analysis. Math. Comput. Simul. 2019, 175, 164–178. [Google Scholar] [CrossRef]
- Almalaq, A.; Zhang, J.J. Deep Learning Application: Load Forecasting in Big Data of Smart Grids; Springer: Cham, Switzerland, 2019; pp. 103–128. [Google Scholar] [CrossRef]
- Almalaq, A.; Zhang, J.J. Evolutionary Deep Learning-Based Energy Consumption Prediction for Buildings. IEEE Access 2018, 7, 1520–1531. [Google Scholar] [CrossRef]
- Sehovac, L.; Nesen, C.; Grolinger, K. Forecasting building energy consumption with deep learning: A Sequence to Sequence Approach. In Proceedings of the 2019 IEEE International Congress on Internet of Things (ICIOT), Milan, Italy, 8–13 July 2019. [Google Scholar] [CrossRef] [Green Version]
- Moghram, I.; Rahman, S. Analysis and Evaluation of Five Short-Term Load Forecasting Techniques. IEEE Power Eng. Rev. 1989, 9, 42–43. [Google Scholar] [CrossRef]
- Yong, Z.; Xiu, Y.; Chen, F.; Pengfei, C.; Binchao, C.; Taijie, L. Short-term building load forecasting based on similar day selection and LSTM network. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 20–22 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Imani, M.; Ghassemian, H. Residential load forecasting using wavelet and collaborative representation transforms. Appl. Energy 2019, 253, 113505. [Google Scholar] [CrossRef]
- Bedi, J.; Toshniwal, D. Empirical Mode Decomposition Based Deep Learning for Electricity Demand Forecasting. IEEE Access 2018, 6, 49144–49156. [Google Scholar] [CrossRef]
- Hossen, T.; Nair, A.S.; Chinnathambi, R.A.; Ranganathan, P. Residential Load Forecasting Using Deep Neural Networks (DNN). In Proceedings of the 2018 North American Power Symposium (NAPS), Fargo, ND, USA, 9–11 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies 2018, 11, 1636. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network. IEEE Trans. Smart Grid 2017, 10, 841–851. [Google Scholar] [CrossRef]
- Veeramsetty, V.; Deshmukh, R. Electric power load forecasting on a 33/11 kV substation using artificial neural networks. SN Appl. Sci. 2020, 2, 855. [Google Scholar] [CrossRef] [Green Version]
- Arvanitidis, A.I.; Bargiotas, D.; Daskalopulu, A.; Laitsos, V.M.; Tsoukalas, L.H. Enhanced Short-Term Load Forecasting Using Artificial Neural Networks. Energies 2021, 14, 7788. [Google Scholar] [CrossRef]
- Son, N. Comparison of the Deep Learning Performance for Short-Term Power Load Forecasting. Sustainability 2021, 13, 12493. [Google Scholar] [CrossRef]
- Hora, S.K.; Poongodan, R.; de Prado, R.P.; Wozniak, M.; Divakarachari, P.B. Long Short-Term Memory Network-Based Metaheuristic for Effective Electric Energy Consumption Prediction. Appl. Sci. 2021, 11, 11263. [Google Scholar] [CrossRef]
- Ma, J.; Cheng, J.C.; Jiang, F.; Chen, W.; Wang, M.; Zhai, C. A bi-directional missing data imputation scheme based on LSTM and transfer learning for building energy data. Energy Build. 2020, 216, 109941. [Google Scholar] [CrossRef]
- Zhang, Z. Improved adam optimizer for deep neural networks. In Proceedings of the 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018. [Google Scholar] [CrossRef]
- Ünal, F.; Almalaq, A.; Ekici, S. A Novel Load Forecasting Approach Based on Smart Meter Data Using Advance Preprocessing and Hybrid Deep Learning. Appl. Sci. 2021, 11, 2742. [Google Scholar] [CrossRef]
- Huang, S.; Tang, J.; Dai, J.; Wang, Y. Signal Status Recognition Based on 1DCNN and Its Feature Extraction Mechanism Analysis. Sensors 2019, 19, 2018. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short Term Memory; München Inst. Für Informatik: München, Germany, 1995. [Google Scholar]
- Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC 2016), Wuhan, China, 11–13 November 2016. [Google Scholar] [CrossRef]
- Jiang, Q.; Cheng, Y.; Le, H.; Li, C.; Liu, P.X. A Stacking Learning Model Based on Multiple Similar Days for Short-Term Load Forecasting. Mathematics 2022, 10, 2446. [Google Scholar] [CrossRef]
- Bi, J.; Zhang, X.; Yuan, H.; Zhang, J.; Zhou, M. A Hybrid Prediction Method for Realistic Network Traffic with Temporal Convolutional Network and LSTM. IEEE Trans. Autom. Sci. Eng. 2021, 19, 1869–1879. [Google Scholar] [CrossRef]
- Sanchez, H. Time Series Forecasting Using Hybrid CNN-RNN. MATLAB Central File Exchange. 2022. Available online: https://www.mathworks.com/matlabcentral/fileexchange/91360-time-series-forecasting-using-hybrid-cnn-rnn (accessed on 20 July 2022).
- Deep Learning Toolbox. Available online: https://in.mathworks.com/products/deep-learning.html (accessed on 22 April 2022).
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
Parameter | Setting |
---|---|
Network architecture | LSTM, GRU, BiLSTM, RNN, ANN CNN–LSTM, CNN–GRU, CNN–BiLSTM |
Optimizer | Adam |
Loss Function | Mean Absolute Error (MAE) |
Learning Rate | {0.0005} |
Adjustment | learning rate = 1 × 10−6 |
Batch Size | 64 |
Epoch | 2000 |
Iteration per epoch | 52 |
Lag | 1:50 h look back |
TrainFcn | gradient descent momentum (traingdx) |
LearnRateDropPeriod | 400 |
LearnRateDropFactor | 0.2 |
CNN, ANN | 32 hidden units |
LSTM, GRU, BiLSTM layers | 400 hidden units |
Model | R | RMSE | NRMSE (%) | MAPE |
---|---|---|---|---|
ANN | 0.9873 | 78.3173 | 1.483 | 0.9562 |
RNN | 0.98577 | 95.2624 | 1.8039 | 1.1695 |
LSTM | 0.9868 | 81.6872 | 1.5468 | 1.0144 |
GRU | 0.9868 | 81.3668 | 1.5407 | 1.0100 |
BiLSTM | 0.9869 | 80.5873 | 1.526 | 0.9991 |
CNN–RNN | 0.9819 | 97.321 | 1.8428 | 1.2194 |
CNN–LSTM | 0.9873 | 77.8123 | 1.4734 | 0.9511 |
CNN–BiLSTM | 0.9872 | 78.085 | 1.4786 | 0.9497 |
CNN–GRU | 0.9875 | 77.4877 | 1.4673 | 0.9505 |
Model | R | RMSE | NRMSE (%) | MAPE |
---|---|---|---|---|
ANN | 0.9749 | 38.3944 | 2.2623 | 1.4723 |
RNN | 0.992 | 21.4315 | 1.2628 | 0.7667 |
LSTM | 0.992 | 21.6804 | 1.2775 | 0.7778 |
BiLSTM | 0.992 | 21.7257 | 1.2802 | 0.7776 |
GRU | 0.9922 | 21.419 | 1.2621 | 0.7614 |
CNN–RNN | 0.9927 | 20.7501 | 1.2227 | 0.7591 |
CNN–LSTM | 0.9918 | 21.9719 | 1.2947 | 0.7946 |
CNN–BiLSTM | 0.9918 | 22.0343 | 1.2983 | 0.7989 |
CNN–GRU | 0.9917 | 22.141 | 1.3046 | 0.8074 |
Model | Training Time |
---|---|
RNN | 77 min 44 s |
LSTM | 43 min 25 s |
BiLSTM | 107 min 59 s |
GRU | 60 min 40 s |
CNN–RNN | 91min 54 s |
CNN–LSTM | 62 min 25 s |
CNN–BiLSTM | 135 min 10 s |
CNN–GRU | 78 min 26 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrasheedi, A.; Almalaq, A. Hybrid Deep Learning Applied on Saudi Smart Grids for Short-Term Load Forecasting. Mathematics 2022, 10, 2666. https://doi.org/10.3390/math10152666
Alrasheedi A, Almalaq A. Hybrid Deep Learning Applied on Saudi Smart Grids for Short-Term Load Forecasting. Mathematics. 2022; 10(15):2666. https://doi.org/10.3390/math10152666
Chicago/Turabian StyleAlrasheedi, Abdullah, and Abdulaziz Almalaq. 2022. "Hybrid Deep Learning Applied on Saudi Smart Grids for Short-Term Load Forecasting" Mathematics 10, no. 15: 2666. https://doi.org/10.3390/math10152666
APA StyleAlrasheedi, A., & Almalaq, A. (2022). Hybrid Deep Learning Applied on Saudi Smart Grids for Short-Term Load Forecasting. Mathematics, 10(15), 2666. https://doi.org/10.3390/math10152666