An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism
Abstract
:1. Introduction
- A multi-headed self-attention mechanism is used to automatically learn features with many standalone heads and to process the information using a residual connection structure. The heads have the same structure but with different initial parameters, which can explore different information features at the same time. This structure is very advanced in the field of deep learning. Through this structure, we can efficiently explore the deep features of the data;
- As one of the first attempts, this paper proposes a deep-learning-based method for automatic feature exploration and freestyle skiing athlete balance control ability assessment, which have been seldomly studied in the current literature;
- A real freestyle skiing athlete under-feet movement pressure measurement dataset is adopted to validate the adopted method, which shows high assessment accuracy and promise for applications in real scenarios.
2. Dataset and Methodology
2.1. Dataset
2.1.1. Introduction of the Dataset
2.1.2. Pre-Processing of the Dataset
2.2. Methods
2.2.1. Proposed Method
2.2.2. Compared Methods
- NN
- 2.
- DNN
- 3.
- DSCNN
- 4.
- RNN
- 5.
- Random Forest
3. Results
3.1. Experiment Description
3.2. Experiment and Results Analysis
3.2.1. Experiment 1
3.2.2. Experiment 2
3.2.3. Experiment 3
4. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snyder, N.; Cinelli, M. Comparing balance control between soccer players and non-athletes during a dynamic lower limb reaching task. Res. Q. Exerc. Sport 2020, 91, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.; Grigorenko, A.; Thorstensson, A. Balance control: Sex and age differences in 9- to 16-year-olds. Child. Neurol. 2005, 47, 449–454. [Google Scholar]
- Andreeva, A.; Melnikov, A.; Skvortsov, D.; Akhmerova, K.; Vavaev, A.; Golov, A.; Draugelite, V.; Nikolaev, R.; Chechelnickaia, S.; Zhuk, D.; et al. Postural stability in athletes: The role of age, sex, performance level, and athlete shoe features. Sports 2020, 8, 89. [Google Scholar] [CrossRef]
- Cloak, R.; Nevill, A.; Day, S.; Wyon, M. Six-week combined vibration and wobble board training on balance and stability in footballers with functional ankle instability. Clin. J. Sport Med. 2013, 23, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Bruijn, S.M.; van Dieën, J.H. Control of human gait stability through foot placement. J. R. Soc. Interface 2018, 15, 20170816. [Google Scholar] [CrossRef]
- Adewusi, S.A.; Al-Bedoor, B.O.B. Wavelet analysis of vibration signals of an overhang rotor with a propagating transverse crack. J. Sound Vib. 2001, 246, 777–793. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, G.; Shan, X.L.; Hu, X.; Guo, Q.; Liu, H.G. Research of weak fault feature information extraction of planetary gear based on ensemble empirical mode decomposition and adaptive stochastic resonance. Measurement 2015, 73, 55–67. [Google Scholar] [CrossRef]
- Singh, A.N.R.; Peters, B.E.M. Artificial neural networks in the determination of the fluid intake needs of endurance athletes. AASRI Procedia 2014, 8, 9–14. [Google Scholar] [CrossRef]
- Li, X.; Jia, X.; Yang, Q.; Lee, J. Quality analysis in metal additive manufacturing with deep learning. J. Intell. Manuf. 2020, 31, 2003–2017. [Google Scholar] [CrossRef]
- Zhao, T.; Li, K.; Ma, H. Study on dynamic characteristics of a rotating cylindrical shell with uncertain parameters. Anal. Math. Phys. 2022, 12, 1–18. [Google Scholar] [CrossRef]
- Zhao, T.Y.; Yan, K.; Li, H.W.; Wang, X. Study on theoretical modeling and vibration performance of an assembled cylindrical shell-plate structure with whirl motion. Appl. Math. Model. 2022, 110, 618–632. [Google Scholar] [CrossRef]
- Lv, J.; Wang, C.; Gao, W.; Zhao, Q. An economic forecasting method based on the lightgbm-optimized lstm and time-series model. Comput. Intell. Neurosci. 2021, 2021, 8128879. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Han, X.; Shen, Y.; Ye, C. Application of improved lstm algorithm in macroeconomic forecasting. Comput. Intell. Neurosci. 2021, 2021, 4471044. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhang, W.; Li, X.; Ma, H.; Luo, Z.; Li, X. Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions. Reliab. Eng. Syst. Saf. 2021, 211, 107556. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Xu, N.X.; Ding, Q. Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places. IEEE Trans. Ind. Electron. 2019, 67, 6785–6794. [Google Scholar] [CrossRef]
- Wang, K.; Chen, K.; Du, H.; Liu, S.; Xu, J.; Zhao, J.; Chen, H.; Liu, Y.; Liu, Y. New image dataset and new negative sample judgment method for crop pest recognition based on deep learning models. Ecol. Inform. 2022, 69, 101620. [Google Scholar] [CrossRef]
- Fujiyosh, H.; Hirakawa, T.; Yamashita, T. Deep learning-based image recognition for autonomous driving. IATSS Res. 2019, 43, 244–252. [Google Scholar] [CrossRef]
- Qian, C.; Xu, F.; Li, H. User Authentication by Gait Data from Smartphone Sensors Using Hybrid Deep Learning Network. Mathematics 2022, 10, 2283. [Google Scholar]
- De-Prado-Gil, J.; Osama, Z.; Covadonga, P.; Martínez-García, R. Prediction of Splitting Tensile Strength of Self-Compacting Recycled Aggregate Concrete Using Novel Deep Learning Methods. Mathematics 2022, 10, 2245. [Google Scholar] [CrossRef]
- Shankar, K.; Kumar, S.; Dutta, A.K.; Alkhayyat, A.; Jawad, A.J.A.M.; Abbas, A.H.; Yousif, Y.K. An Automated Hyperparameter Tuning Recurrent Neural Network Model for Fruit Classification. Mathematics 2022, 10, 2358. [Google Scholar] [CrossRef]
- Anand, M.; Sahay, K.B.; Ahmed, M.A.; Sultan, D.; Chandan, R.R.; Singh, B. Deep learning and natural language processing in computation for offensive language detection in online social networks by feature selection and ensemble classification techniques. Theor. Comput. Sci. 2022. [Google Scholar] [CrossRef]
- Yang, G.; Li, J.; Xu, W.; Feng, H.; Zhao, F.; Long, H.; Meng, Y.; Chen, W.; Yang, H.; Yang, G. Fusion of optical and SAR images based on deep learning to reconstruct vegetation NDVI time series in cloud-prone regions. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102818. [Google Scholar]
- Yang, H.; Li, X.; Zhang, W. Interpretability of deep convolutional neural networks on rolling bearing fault diagnosis. Meas. Sci. Technol. 2022, 33, 055005. [Google Scholar] [CrossRef]
- Wu, B.; Cai, W.; Cheng, F.; Chen, H. Simultaneous-fault diagnosis considering time series with a deep learning transformer architecture for air handling units. Energy Build. 2022, 257, 111608. [Google Scholar] [CrossRef]
- Saadallah, A.; Abdulaaty, O.; Morik, K.; Büscher, J.; Panusch, T.; Deuse, J. Early quality prediction using deep learning on time series sensor data. Procedia CIRP 2022, 107, 611–616. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Li, X. Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction and on-line validation. Measurement 2020, 164, 108052. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Ma, H. Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mech. Syst. Signal Processing 2020, 143, 106825. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Degradation alignment in remaining useful life prediction using deep cycle-consistent learning. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–12. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ma, H.; Luo, Z.; Li, X. Universal domain adaptation in fault diagnostics with hybrid weighted deep adversarial learning. IEEE Trans. Ind. Inform. 2021, 17, 7957–7967. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ma, H.; Luo, Z.; Li, X. Federated learning for machinery fault diagnosis with dynamic validation and self-supervision. Knowl.-Based Syst. 2021, 213, 106679. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X. Federated transfer learning for intelligent fault diagnostics using deep adversarial networks with data privacy. IEEE/ASME Trans. Mechatron. 2021, 27, 430–439. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Ma, H.; Luo, Z.; Li, X. Open-set domain adaptation in machinery fault diagnostics using instance-level weighted adversarial learning. IEEE Trans. Ind. Inform. 2021, 17, 7445–7455. [Google Scholar] [CrossRef]
- Mwata-Velu, T.Y.; Avina-Cervantes, J.G.; Ruiz-Pinales, J.; Garcia-Calva, T.A.; González-Barbosa, E.A.; Hurtado-Ramos, J.B.; González-Barbosa, J.J. Improving Motor Imagery EEG Classification Based on Channel Selection Using a Deep Learning Architecture. Mathematics 2022, 10, 2302. [Google Scholar] [CrossRef]
- Ghasrodashti, E.K.; Sharma, N. Hyperspectral image classification using an extended Auto-Encoder method. Signal Process. Image Commun. 2021, 92, 116111. [Google Scholar] [CrossRef]
- Sertolli, B.; Zhao, R.; Schuller, B.W.; Cummins, N. Representation transfer learning from deep end-to-end speech recognition networks for the classification of health states from speech. Comput. Speech Lang. 2021, 68, 101204. [Google Scholar] [CrossRef]
- Ribeiro, M.; Lazzaretti, A.E.; Lopes, H.S. A study of deep convolutional auto-encoders for anomaly detection in videos. Pattern Recognit. Lett. 2018, 105, 13–22. [Google Scholar] [CrossRef]
- Yu, F.; Liu, J.; Liu, D.; Wang, H. Supervised convolutional autoencoder-based fault-relevant feature learning for fault diagnosis in industrial processes. J. Taiwan Inst. Chem. Eng. 2022, 132, 104200. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Processing Syst. 2017, 30. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929, 2010. [Google Scholar]
- Huang, K.; Tian, C.; Su, J.; Lin, J.C.W. Transformer-based cross reference network for video salient object detection. Pattern Recognit. Lett. 2022, 160, 122–127. [Google Scholar] [CrossRef]
- Rai, N.; Kumar, D.; Kaushik, N.; Raj, C.; Ali, A. Fake news classification using transformer based enhanced LSTM and BERT. Int. J. Cogn. Comput. Eng. 2022, 3, 98–105. [Google Scholar] [CrossRef]
- Islam, M.R.; Martin, A. Detection of COVID 19 from CT image by the novel LeNet-5 CNN architecture. In Proceedings of the 2020 23rd International Conference on Computer and Information Technology (ICCIT), IEEE, Dhaka, Bangladesh, 19–21 December 2020; pp. 1–5. [Google Scholar]
- Sun, J.; Cai, X.; Sun, F.; Zhang, J. Scene image classification method based on Alex-Net model. In Proceedings of the 2016 3rd International Conference on Informative and Cybernetics for Computational Social Systems (ICCSS), IEEE, Jinzhou, China, 26–29 August 2016; pp. 363–367. [Google Scholar]
- Rezaee, M.; Zhang, Y.; Mishra, R.; Tong, F.; Tong, H. Using a vgg-16 network for individual tree species detection with an object-based approach. In Proceedings of the 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS), IEEE, Beijing, China, 19–20 August 2018; pp. 1–7. [Google Scholar]
- Gisbrecht, A.; Schulz, A.; Hammer, B. Parametric nonlinear dimensionality reduction using kernel t-SNE. Neurocomputing 2015, 147, 71–82. [Google Scholar] [CrossRef] [Green Version]
Athlete Level | Number of Athletes | Code Names | Sampling Frequency |
---|---|---|---|
A | 3 | A#1, A#2, A#3 | 100 Hz |
B | 3 | B#1, B#2, B#3 | 100 Hz |
C | 3 | C#1, C#2, C#3 | 100 Hz |
D | 3 | D#1, D#2, D#3 | 100 Hz |
Task Name | Concerned Athletes | Sample Number of Every Athlete | Ratio of Training to Testing |
---|---|---|---|
T0 | A#1, B#1, C#1, D#1 | 200 | 4:1 |
T1 | A#2, B#2, C#2, D#2 | 200 | 4:1 |
T2 | A#1, B#1, C#1, D#1 | 200 | 4:1 |
A#2, B#2, C#2, D#2 | |||
T3 | A#1, B#1, C#1, D#1 | 400 | 4:1 |
A#2, B#2, C#2, D#2 | |||
T4 | A#1, B#1, C#1, D#1 | 200 | 4:1 |
A#2, B#2, C#2, D#2 | |||
A#3, B#3, C#3, D#3 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Batch size | 32 | Learning rate | |
Epoch number | 100 | Sample dimension | 200 × 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Cui, X.; Wang, X.; Zhang, W.; Zhao, T. An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism. Mathematics 2022, 10, 2794. https://doi.org/10.3390/math10152794
Xu N, Cui X, Wang X, Zhang W, Zhao T. An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism. Mathematics. 2022; 10(15):2794. https://doi.org/10.3390/math10152794
Chicago/Turabian StyleXu, Nannan, Xinze Cui, Xin Wang, Wei Zhang, and Tianyu Zhao. 2022. "An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism" Mathematics 10, no. 15: 2794. https://doi.org/10.3390/math10152794
APA StyleXu, N., Cui, X., Wang, X., Zhang, W., & Zhao, T. (2022). An Intelligent Athlete Signal Processing Methodology for Balance Control Ability Assessment with Multi-Headed Self-Attention Mechanism. Mathematics, 10(15), 2794. https://doi.org/10.3390/math10152794