Infrared Target-Background Separation Based on Weighted Nuclear Norm Minimization and Robust Principal Component Analysis
Abstract
:1. Introduction
- ➢
- The infrared patch-image model via IPINCNWNNM–RPCA was proposed and was solved by the ADMM method.
- ➢
- Extensive simulation was carried out that shows that the proposed scheme not only has good detection capabilities but also has good background estimation capabilities.
2. Materials and Methods
2.1. Methods Based on Background Assumptions
2.2. Methods Based on Object Saliency Identification
2.3. Pattern Classification Based Methods
2.4. Patch Image-Based Methods
References | Publication Year | Method Name | Advantages | Disadvantages |
---|---|---|---|---|
Methods based on Background spatial consistency | ||||
M.M. Hadhoud and D.W. Thomas [5] | 1998 | TDLMS | This method is very simple to use for purposes like reducing noise and improving the object of interest. | In a noisy environment, it fails to perform. |
S.D. Deshpande et al. [6] | 1999 | Max–median and max–mean | These methods are very simple to use for purposes like reducing noise and improving the object of interest. | In addition to the targets, these methods also enhance the strong cloud. |
T.-W. Bae et al. [7] | 2012 | TDLMS edge-directional filter | Applies filtering to preserve the edges by estimating the direction. | In a noisy environment, it fails to perform. |
Y. Cao et al. [8] | 2008 | Neighborhood-based analysis of TDLMS filter | The process computes the edge direction and preserves the edge based on neighbor information. | In a noisy environment, it fails to perform. |
T.-W. Bae & K.-I. Sohng [9] | 2010 | Bilateral filter according to edge component | The process estimates the edge information based on bilateral filters. | In a noisy environment, it fails to perform. |
R. Fortin and J. Rivest M. Zeng et al.,X. Bai et al. [10,11,41,42] | 1996, 2006, 2012, 2010 | Morphological-based methods, top-hat filter, and toggle contrast | These methods are very simple to use. | It is necessary to have a well-designed filter that can meet the desired qualities. |
Methods based on Target saliency | ||||
Kim et al. [15] and Shao et al. [16] | 2012 | LOG | The primary purposes of these methods are to reduce noise and improve the object of interest. | Does not work well with very small or insignificant objects. |
Wang et al. [12] | 2012 | Difference of Gaussian | Improves the target intensity and suppresses the clutter. | Does not work well with very small or insignificant objects. |
Han et al. [14] | 2016 | Gabor filter | Improves the target intensity and suppresses the clutter. | Does not work well with very small or insignificant objects. |
Chen et al. [3] | 2014 | LCM | Utilizes the local contrast information. | Does not work well with very small or insignificant objects. |
Rao et al. [13] | 2021 | WLCV | Utilizes the weighted saliency map information. | Does not work well with very small or insignificant objects. |
Yu et al. [17] | 2022 | Multiscale local contrast learning | Utilizes the local contrast information. | Does not work well with very small or insignificant objects. |
Y. Wei et al. [18] | 2016 | MPCM | Utilizes the multi-patch information and the local contrast information. | Does not work well with very small or insignificant objects. |
Small Target detection using patch-level | ||||
T. Hu et. al. [21], Y. Cao, [22], Liu et al. [23] C., Z.-Z. Li et al. and Wang et al. [24,25] | 2010, 2008, 2005, 2012, 2014, 2015 | PPCA, NLPCA, KPCA, (SR), and sea-sky background dictionary | Perform well when it comes to targeting background classification under noise. | The downsides of these systems include that each overlapped patch must be projected into a dictionary and that reconstructing the object of interest is a time-consuming process. |
Small Target detection using patch-image level | ||||
Gao et al. [1], Rawat et al. [31,32,33,34] Gao et. [35,37,38,39] | 2013, 2022, 2017, 2017, 2017, 2017, 2017, 2019, | IPI, TV-PSMSV, NIPPS, ReWIPI), RIPT, TV-PCP, NRAM, PSTN | In a complex clutter scene, these approaches display significant target- background suppression. | Compositionality is high in this case. Second, the l1 norm-based approach is used. |
3. The Proposed Method
3.1. Background Patch-Image
3.2. Small Target Patch-Image
3.3. Background Separation Solution for Small Target
- (1)
- (2)
- (3)
3.4. Separation Model for Target-Background Model
3.4.1. Creation of the Patch-Image Form Input
3.4.2. Target-Background Separation
Algorithm 1 Solving IPNWNNM-RPCA via ADMM |
Input: Real patch image D, weighting parameter . |
Output: |
Initialize: |
While (not converged) do |
|
|
; |
|
; |
|
; |
|
|
k++; |
end |
3.4.3. Regeneration of the Target and Background Images
3.4.4. Segmentation Process
4. Experimental Result Analysis
4.1. Parameter Settings, Baseline Methods, and Evaluation Indicators Metrics
4.2. Evaluation Indicators
4.3. Results of Experiments on Single Infrared Images
4.4. Computational Complexity
4.5. Infrared Image Sequences Yielded Experimental
4.6. Simulation Results for the Infrared Image Sequences with Noise
4.7. Simulation Results When Infrared Image Sequences Are Synthetic
4.8. Parameter Analysis
4.8.1. Patch Size
4.8.2. Step Size
4.8.3. Controlling Parameter
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhao, X.; Hauptmann, A.G. Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Processing 2013, 22, 4996–5009. [Google Scholar] [CrossRef]
- Reed, I.S.; Gagliardi, R.M.; Stotts, L.B. Optical moving target detection with 3-D matched filtering. IEEE Trans. Aerosp. Electron. Syst. 1988, 24, 327–336. [Google Scholar] [CrossRef]
- Chen, C.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 2014, 52, 574–581. [Google Scholar] [CrossRef]
- Rawat, S.; Verma, S.K.; Kumar, Y. Review on recent development in infrared small target detection algorithms. Procedia Comput. Sci. 2020, 167, 2496–2505. [Google Scholar] [CrossRef]
- Hadhoud, M.M.; Thomas, D.W. The two-dimensional adaptive LMS (TDLMS) algorithm. IEEE Trans. Circuits Syst. 1998, 35, 485–494. [Google Scholar] [CrossRef]
- Deshpande, S.D.; Meng, H.E.; Venkateswarlu, R.; Chan, P. Max-mean and max-median filters for detection of small targets. SPIE’s Int. Symp. Opt. Sci. Eng. Instrum. 1999, 3809, 74–83. [Google Scholar]
- Bae, T.W.; Zhang, F.; Kweon, I.S. Edge directional 2D LMS filter for infrared small target detection. Infrared Phys. Technol. 2012, 55, 137–145. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, R.; Yang, J. Small target detection using two-dimensional least mean square (TDLMS) filter based on neighborhood analysis. Int. J. Infrared Millim. Waves 2008, 29, 188–200. [Google Scholar] [CrossRef]
- Bae, T.W.; Sohng, K.I. Small target detection using bilateral filter based on edge component. J. Infrared Millim. Terahertz Waves 2010, 31, 735–743. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, F.; Xue, B. Infrared dim small target enhancement using toggle contrast operator. Infrared Phys. Technol. 2012, 55, 177–182. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, F. Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recognit. 2010, 43, 2145–2156. [Google Scholar] [CrossRef]
- Wang, X.; Lv, G.; Xu, L. Infrared dim target detection based on visual attention. Infrared Phys. Technol. 2012, 55, 513–521. [Google Scholar] [CrossRef]
- Rao, J.; Mu, J.; Li, F.; Liu, S. Infrared Small Target Detection Based on Weighted Local Coefficient of Variation Measure. Sensors 2022, 22, 3462. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, Y. A New Database Intrusion Detection Approach Based on Hybrid Meta-heuristics. Comput. Mater. Contin. 2021, 66, 1879–1895. [Google Scholar] [CrossRef]
- Rour, R.; Parida, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, I.O. Skin Lesion Extraction Using Multiscale Morphological Local Variance Reconstruction Based Watershed Transform and Fast Fuzzy C-Means Clustering. Symmetry 2021, 11, 2085. [Google Scholar]
- Shao, X.; Fan, H.; Lu, G.; Xu, J. An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system. Infrared Phys. Technol. 2012, 55, 403–408. [Google Scholar] [CrossRef]
- Yu, C.; Liu, Y.; Wu, S.; Hu, Z.; Xia, X.; Lan, D.; Liu, X. Infrared small target detection based on multiscale local contrast learning networks. Infrared Phys. Technol. 2022, 123, 104107. [Google Scholar] [CrossRef]
- Wei, Y.; You, X.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 2016, 58, 216–226. [Google Scholar] [CrossRef]
- Turk, M.; Pentland, A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991, 3, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; pp. 2080–2088. [Google Scholar]
- Hu, T.; Zhou, J.J.; Cao, Y.; Wang, F.L.; Yang, J. Infrared small target detection based on saliency and principle component analysis. J. Infrared Millim. Waves 2010, 29, 303–306. [Google Scholar]
- Suryanarayana, G.; Chandran, K.; Khalaf, O.I.; Alotaibi, Y.; Alsufyani, A.; Alghamdi, S.A. Accurate Magnetic Resonance Image Super-Resolution Using Deep Networks and Gaussian Filtering in the Stationary Wavelet Domain. IEEE Access 2021, 9, 71406–71417. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, C.; Shen, X.; Zou, X. Detection of small objects in image data based on the nonlinear principal component analysis neural network. Opt. Eng. 2005, 44, 093604. [Google Scholar] [CrossRef]
- Li, Z.Z.; Chen, J.; Hou, Q.; Fu, H.X.; Dai, Z.; Jin, G.; Li, R.Z.; Liu, C. Sparse representation for infrared dim target detection via a discriminative over-complete dictionary learned online. Sensors 2014, 14, 9451–9470. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, X.; Ning, C.; Xu, M.; Yan, X. A sparse representation-based method for infrared dim target detection under sea--sky background. Infrared Phys. Technol. 2015, 71, 347–355. [Google Scholar] [CrossRef]
- Wang, C.; Qin, S. Adaptive detection method of infrared small target based on target-background separation via robust principal component analysis. Infrared Phys. Technol. 2015, 69, 123–135. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Maggioni, M.; Katkovnik, V.; Egiazarian, K.; Foi, A. Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 2013, 22, 119–133. [Google Scholar] [CrossRef]
- He, Y.; Li, M.; Zhang, J.; An, Q. Small infrared target detection based on low-rank and sparse representation. Infrared Phys. Technol. 2015, 68, 98–109. [Google Scholar] [CrossRef]
- Kollapudi, P.; Alghamdi, S.; Veeraiah, N.; Alotaibi, Y.; Thotakura, S. A New Method for Scene Classification from the Remote Sensing Images. CMC-Comput. Mater. Contin. 2022, 72, 1339–1355. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Song, Y.; Guo, J. Non-negative infrared patch-image model: Robust target-background separation via partial sum minimization of singular values. Infrared Phys. Technol. 2017, 81, 182–194. [Google Scholar] [CrossRef]
- Rawat, S.S.; Saleh, A.; Kumar, G.; Alotaibi, Y.; Khalaf, I.O.; Verma, L.P. Infrared Small Target Detection Based on Partial Sum Minimization and Total Variation. Mathematics 2022, 10, 671. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Song, Y. Infrared small target and background separation via column-wise weighted robust principal component analysis. Infrared Phys. Technol. 2016, 77, 421–430. [Google Scholar] [CrossRef]
- Rawat, S.; Verma, S.K.; Kumar, Y. Reweighted infrared patch image model for small target detection based on non-convex p-norm minimisation and TV regularization. IET Image Process. 2020, 14, 1937–1947. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3752–3767. [Google Scholar] [CrossRef]
- Gu, S.; Xie, Q.; Meng, D.; Zuo, W.; Feng, X.; Zhang, L. Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 2017, 121, 183–208. [Google Scholar] [CrossRef]
- Wang, X.; Zhenming, P.; Dehui, K.; Zhang, P.; He, P. Infrared dim target detection based on total variation regularization and principal component pursuit. Image Vis. Comput. 2017, 63, 1–9. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, L.; Zhang, T.; Cao, S.; Peng, Z. Infrared small target detection via non-convex rank approximation minimization joint l2, 1 norm. Remote Sens. 2018, 10, 1821. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Z. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef]
- Gaun, X.; Zhang, L.; Huang, S.; Peng, Z. Infrared small target detection via non-convex tensor rank surrogate joint local contrast energy. Remote Sens. 2020, 12, 1520. [Google Scholar] [CrossRef]
- Rawat, S.S.; Verma, S.K.; Kumar, Y.; Kumar, G. Infrared small target detection based on non-convex Lp-norm minimization. J. MESA 2021, 12, 929–942. [Google Scholar]
- Zeng, M.; Li, J.; Peng, Z. The design of top-hat morphological filter and application to infrared target detection. Infrared Phys. Technol. 2006, 48, 67–76. [Google Scholar] [CrossRef]
- Candes, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 1–37. [Google Scholar] [CrossRef]
- Hilliard, C.I. Selection of a clutter rejection algorithm for real-time target detection from an airborne platform. In Proceedings of the SPIE, Orlando, FL, USA, 13 July 2000; Volume 4048, pp. 74–84. [Google Scholar]
- Gu, Y.; Wang, C.; Liu, B.; Zhang, Y. A kernel-based nonparametric regression method for clutter removal in infrared small-target detection applications. IEEE Geosci. Remote Sens. Lett. 2010, 7, 469–473. [Google Scholar] [CrossRef]
Sequences | Target Type | Image Size | No of Frames | Background Image Features | Target Image Features |
---|---|---|---|---|---|
1 | Small ship | 256 × 200 | 30 | Dense sea-sky |
|
2 | An airplane | 256 × 200 | 250 | High dense clouds with less local contrast |
|
3 | Two target | 256 × 200 | 250 | Changing background |
|
4 | Copter | 128 × 128 | 100 | Changing background |
|
5 | Ship | 128 × 128 | 200 | Changing background |
|
6 | An airplane | 280 × 228 | 250 | High dense clouds with less local contrast |
|
Sr. No. | Techniques | Parameters |
---|---|---|
1 | Max–median [6] | Filter = 5 × 5 |
2 | Max–mean [6] | Filter = 5 × 5 |
3 | IPI [1] | Sliding step = 10, tolerance error , Patch size = 50 × 50 |
4 | NIPPS [31] | Sliding step = 10, Patch size = 50 × 50, r = = 1.5 |
5 | Top-Hat [11] | Filter shape = square, square size = 3 × 3 |
6 | RPCA [26] | sliding step = 10, Patch size = 50 × , |
7 | RIPT [35] | , Patch size = 50 × 50, L = 1, h = 1, sliding step = 10 |
8 | PSTN [39] | , Patch size = 40 × 40, L = 0.6, = 1.05, sliding step = 40, |
9 | Infra small target detection based on nonconvex LP norm minimization (IPCWLP–RPCA [41] | = 1.05, , sliding step is 10 |
10 | Our Method | = 1.05 |
Detection Methods | Evaluation Indicators | Image6 | Image5 | Image4 | Image3 | Image2 | Image1 |
---|---|---|---|---|---|---|---|
Max–Median | BSF | 1.914 | 1.861 | 3.816 | 1.934 | 3.404 | 1.354 |
SCRG | 1.863 | 3.117 | 51.109 | 16.001 | 6.358 | 5.881 | |
Top Hat | BSF | 0.528 | 0.923 | 2.354 | 0.882 | 1.573 | 1.104 |
SCRG | 2.938 | 3.081 | 53.302 | 9.440 | 4.024 | 6.546 | |
Max–Mean | BSF | 1.521 | 1.167 | 3.249 | 1.714 | 1.795 | 1.185 |
SCRG | 6.640 | 2.117 | 36.456 | 10.211 | 2.532 | 4.460 | |
RPCA | BSF | 0.952 | 0.494 | 6.468 | 7.443 | 0.681 | 0.489 |
SCRG | 2.274 | 0.683 | 76.236 | 73.628 | 0.279 | 3.166 | |
IPI | BSF | 22.280 | 29.862 | 13.778 | 8.799 | 13.565 | 3.219 |
SCRG | 115.118 | 125.505 | 263.310 | 113.135 | 34.854 | 0.013 | |
NIPPS | BSF | 36.604 | 7.413 | 6.726 | 3.898 | 39.983 | 3.955 |
SCRG | 182.053 | 30.018 | 168.042 | 55.151 | 80.137 | 15.629 | |
RIPT | BSF | 13.638 | 26.180 | 10.155 | 10.340 | 5.210 | 4.734 |
SCRG | 71.826 | 107.088 | 196.948 | 87.306 | 16.036 | 18.458 | |
IPCWLP—RPCA | BSF | 1.60 | 2.55 | 1.37 | 3.23 | 1.40 | 1.29 |
SCRG | 9.31 | 96.89 | 115.04 | 74.74 | 7.69 | 188.50 | |
IPNCWNNM–RPCA | BSF | 40.290 | 101.232 | 3.226 | 15.132 | 2.551 | 1.600 |
SCRG | 194.540 | 14.860 | 74.835 | 125.127 | 106.124 | 21.213 |
Detection Methods | Top Hat | Max–Mean | Max–Median | I PI | RPCA | NIPPS | RIPT | NRAM | PSTN | IPCWLP-RPCA | IPNCWNNM–RPCA |
---|---|---|---|---|---|---|---|---|---|---|---|
Complexity | (k2log k2M × N) | (k2M × N) | (k2M × N) | (m × n2) | (m × n2) | (m × n2) | (m × n2) | (m × n2) | ) | (k × m × n2) | (m × n2) |
Time (s) | 0.968 | 7.70 | 6.84 | 12.64 | 10.86 | 5.15 | 1.95 | 3.89 | 0.35 | 11.78 | 10.52 |
Detection Methods | Evaluation Indicators | Image6 | Image5 | Image4 | Image3 | Image2 | Image1 |
---|---|---|---|---|---|---|---|
Max–Median | BSF | 1.255 | 1.861 | 3.816 | 0.863 | 3.387 | 1.383 |
SCRG | 17.867 | 3.117 | 51.109 | 6.461 | 1.580 | 1.936 | |
Top Hat | BSF | 0.923 | 0.923 | 2.354 | 0.512 | 2.339 | 0.488 |
SCRG | 24.651 | 3.081 | 53.302 | 7.376 | 5.733 | 1.412 | |
Max–Mean | BSF | 1.195 | 1.167 | 3.249 | 0.747 | 3.895 | 1.295 |
SCRG | 17.393 | 2.117 | 36.456 | 5.415 | 1.708 | 1.765 | |
RPCA | 3.790 | 0.494 | 6.468 | 3.073 | 25.882 | 3.701 | |
SCRG | 90.559 | 0.683 | 76.236 | 36.166 | 60.950 | 12.672 | |
IPI | BSF | 10.410 | 29.862 | 13.778 | 7.680 | 52.274 | 8.698 |
SCRG | 195.948 | 125.505 | 263.310 | 79.869 | 112.307 | 17.799 | |
NIPPS | BSF | 7.576 | 7.413 | 6.726 | 2.687 | 6.169 | 4.453 |
SCRG | 4.700 | 30.018 | 168.042 | 23.787 | 6.298 | 0.621 | |
RIPT | BSF | 14.874 | 0.896 | 3.125 | 3.101 | 7.124 | 3.440 |
SCRG | 0.038 | 0.062 | 24.799 | 9.308 | 4.835 | 0.476 | |
NRAM | BSF | 3.026 | 1.477 | 3.002 | 1.776 | 4.948 | 1.401 |
SCRG | 14.284 | 0.033 | 27.870 | 6.726 | 2.694 | 0.404 | |
IPNCWNNM–RPCA | BS | 18.138 | 41.475 | 14.482 | 8.678 | 4.022 | 5.564 |
SCRG | 27.860 | 0.394 | 134.26 | 95.494 | 89.265 | 18.298 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawat, S.S.; Singh, S.; Alotaibi, Y.; Alghamdi, S.; Kumar, G. Infrared Target-Background Separation Based on Weighted Nuclear Norm Minimization and Robust Principal Component Analysis. Mathematics 2022, 10, 2829. https://doi.org/10.3390/math10162829
Rawat SS, Singh S, Alotaibi Y, Alghamdi S, Kumar G. Infrared Target-Background Separation Based on Weighted Nuclear Norm Minimization and Robust Principal Component Analysis. Mathematics. 2022; 10(16):2829. https://doi.org/10.3390/math10162829
Chicago/Turabian StyleRawat, Sur Singh, Sukhendra Singh, Youseef Alotaibi, Saleh Alghamdi, and Gyanendra Kumar. 2022. "Infrared Target-Background Separation Based on Weighted Nuclear Norm Minimization and Robust Principal Component Analysis" Mathematics 10, no. 16: 2829. https://doi.org/10.3390/math10162829
APA StyleRawat, S. S., Singh, S., Alotaibi, Y., Alghamdi, S., & Kumar, G. (2022). Infrared Target-Background Separation Based on Weighted Nuclear Norm Minimization and Robust Principal Component Analysis. Mathematics, 10(16), 2829. https://doi.org/10.3390/math10162829