Approximate Controllability of Semilinear Stochastic Generalized Systems in Hilbert Spaces
Abstract
:1. Introduction
- (i)
- ,
- (ii)
- for all where is a constant,
- (iii)
- is compact. Then the operator has a fixed-point in B.
2. Approximate Controllability of the Semilinear Stochastic Generalized Systems with the Control Only Acting on the Drift Terms
2.1. Mild Solution of Semilinear Stochastic Generalized System (1)
- (i)
- There exists a mild solution to semilinear stochastic generalized system (1) unique, up to equivalence, among the process satisfying (2). Moreover possesses a continuous modification.
- (ii)
- For , there exists a positive constant such thatwhere is a constant.
- (iii)
- For , there exists a positive constant such thatwhere is a constant.
2.2. Approximate Controllability of Linear Stochastic Generalized System and Stochastic Generalized Linear Regulator Problem
- (i)
- For there exists such that
- (ii)
- If satisfies Hypothesis 4 and then there exists such thatand for all
2.3. The Approximate Controllability of Semilinear Stochastic Generalized System (1)
3. Approximate Controllability of the Semilinear Stochastic Generalized Systems with Control Acting on Both Drift and Diffusion Terms
3.1. Preliminaries
3.2. Approximate Controllability of Semilinear Stochastic Generalized System (32)
3.3. Approximate Controllability of Linear Case
4. Application Examples
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalman, R.E. Contributions to the theory of optimal control. Bol. Soc. Mat. Mex. 1960, 5, 102–119. [Google Scholar]
- Connors, M.M. Controllability of discrete, linear, random dynamics systems. SIAM Control Optim. 1967, 5, 183–210. [Google Scholar] [CrossRef]
- Aoki, M. On observability of stochastic discrete-time dynamic systems. J. Frankl. Inst. 1968, 286, 36–38. [Google Scholar] [CrossRef]
- Fitts, J.M. On the global observability of nonlinear systems. In Proceedings of the 1st Sympsium on Nonlinear Estimation Theory and Applications, San Diego, CA, USA, 10–12 September 1970; p. 128. [Google Scholar]
- Gershwin, S.B. A controllability theory for nonlinear dynamics systems. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1970. [Google Scholar]
- Sunahara, Y.; Kishino, K.; Aihara, S. On stochastic observability of nonlinear discrete-time dynamical systems. Int. J. Control 1974, 19, 719–732. [Google Scholar] [CrossRef]
- Sunahara, Y.; Kabeuchi, T.; Asada, Y.; Aihara, S.; Kishino, K. On stochastic controllability for nonlinear systems. IEEE Trans. Autom. Control 1974, 19, 49–54. [Google Scholar] [CrossRef]
- Sunahara, Y.; Aihara, S.; Kishino, K. On the stochastic observability and controllability for nonlinear systems. Int. J. Control 1975, 22, 65–82. [Google Scholar] [CrossRef]
- Chen, H.F. On stochastic observability. Sci. Sin. 1977, 20, 305–324. [Google Scholar]
- Sunahara, Y.; Aihara, S. On stochastic observability and controllability for nonlinear distributed parameter systems. Inf. Control 1977, 34, 348–371. [Google Scholar] [CrossRef]
- Klamka, J.; Socha, L. Some remarks about stochastic controllability. IEEE Trans. Autom. Control 1977, 22, 880–881. [Google Scholar] [CrossRef]
- Harris, S.E. Stochastic controllability of linear discrete systems with multicative noise. Int. J. Control 1978, 27, 213–227. [Google Scholar] [CrossRef]
- Dubov, M.A.; Mordukhovich, B.S. Theory of controllability of linear stochastic systems. Differ. Equ. 1978, 14, 1609–1612. [Google Scholar]
- Zabcjyk, J. On Stochastic Controllability; FDS Report, No 34; Universitat Bremen: Bremen, Germany, 1980. [Google Scholar]
- Chen, H.F. On stochastic observability and controllability. Automatica 1980, 16, 179–190. [Google Scholar] [CrossRef]
- Zabcjyk, J. Controllability of stochastic linear systems. Syst. Control Lett. 1981, 1, 25–31. [Google Scholar] [CrossRef]
- Ehrhard, M.; Kliemann, W. Controllability of stochastic linear systems. Syst. Control Lett. 1982, 2, 145–153. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Hajiyev, R.R. On controllability of the partially observed stochastic systems. I. Izv. Akad. Nauk Azerbaidzhan. SSR Ser. Fiz.-Tekhn.-Mat. Nauk 1983, 4, 109–114. (In Russian) [Google Scholar]
- Dubov, M.A.; Morduchovich, B.S. On controllability of infinite dimensional linear stochastic systems. In Stochastic Control, Proceedings of the 2nd IFAC Symposium, Vilnius, Lithuannian SSR USSR, 19–23 May 1986 (IFAC Symposia Series); Pergamon Press: Oxford, UK; New York, NY, USA, 1987; Volume 2, pp. 307–310. [Google Scholar]
- Bensoussan, A. Stochastic Control of Partially Observable Systems; Cambridge University Press: London, UK, 1992. [Google Scholar]
- Peng, S.G. Backward stochastic differential equation and exact controllability of stochastic control systems. Prog. Nat. Sci. 1994, 4, 274–283. [Google Scholar]
- Bashirov, A.E.; Kerimov, K.R. On controllability conception for stochastic systems. SIAM J. Control Optim. 1997, 35, 384–398. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Mahmudov, N.I. On concepts of controllability for deterministic and stochastic systems. SIAM J. Control Optim. 1999, 37, 1808–1821. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Mahmudov, N.I. Controllability of linear deterministic and stochastic systems. In Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, USA, 7–10 December 1999; Volume 4, pp. 3196–3202. [Google Scholar]
- Mahmudov, N.I.; Denker, A. On controllability of linear stochastic systems. Int. J. Control 2000, 73, 144–151. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Controllability of linear stochastic systems. IEEE Trans. Autom. Control 2001, 46, 724–731. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Controllability of linear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 2001, 259, 64–82. [Google Scholar] [CrossRef]
- Mahmudov, N.I. On controllability of semilinear stochastic systems in Hilbert spaces. IMA J. Math. Control Inf. 2002, 19, 363–376. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Peng, S.G. Infinite horizon backward stochastic differential equation and exponential convergence index assignment of stochastic control systems. Automatica 2002, 38, 1417–1423. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Controllability and observability of linear stochastic systems in Hilbert spaces. Prog. Probab. 2003, 53, 151–167. [Google Scholar]
- Mahmudov, N.I. Controllability of semilinear stochastic systems in Hilbert spaces. J. Math. Anal. Appl. 2003, 288, 197–211. [Google Scholar] [CrossRef]
- Mahmudov, N.I. Approximate controllability of semilinear deterministic and stochastic evolution equation in abstract spaces. SIAM J. Control Optim. 2003, 42, 1604–1622. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Zorlu, S. Controllability of non-linear stochastic systems. Int. J. Control 2003, 76, 95–104. [Google Scholar] [CrossRef]
- Ugrinovskii, V.A. Observability of linear stochastic uncertain systems. IEEE Trans. Autom. Control 2003, 48, 2246–2269. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Zorlu, S. Controllability of semilinear stochastic systems. Int. J. Control 2005, 78, 997–1004. [Google Scholar] [CrossRef]
- Dauer, J.P.; Mahmudov, N.I.; Matar, M.M. Approximate controllability of backward stochastic evolution equations in Hilbert spaces. J. Math. Anal. Appl. 2006, 323, 42–56. [Google Scholar] [CrossRef]
- Mahmudov, N.I.; Mckibben, M.A. Approximate controllability of second order neutral stochastic evolution equation. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithm 2006, 13, 619–634. [Google Scholar]
- Sakthivel, R.; Kim, J.H. On controllability of nonlinear stochastic systems. Rep. Math. Phys. 2006, 58, 433–443. [Google Scholar] [CrossRef]
- Klamka, J. Stochastic controllability of linear stochastic systems with delay in control. Bull. Pol. Acad. Sci. Tech. Sci. 2007, 55, 23–29. [Google Scholar]
- Gorac, D. Approximate controllability for linear stochastic differential equations in infinite dimensions. Appl. Math. Optim. 2009, 60, 105–132. [Google Scholar] [CrossRef]
- Tang, S.J.; Zhang, X. Null controllability for forward and backward stochastic parabolic equations. SIAM J. Control Optim. 2009, 48, 2191–2216. [Google Scholar] [CrossRef]
- Sakthivel, R.; Mahmudov, N.I.; Lee, S.G. Controllability of nonlinear impulsive stochastic systems. Int. J. Control 2009, 82, 801–807. [Google Scholar] [CrossRef]
- Klamka, J. Stochastic controllability of systems with multiple delays in control. Int. J. Appl. Math. Comput. Sci. 2009, 19, 39–47. [Google Scholar] [CrossRef]
- Bashirov, A.E.; Etikan, H.; Semi, N. Partial controllability of stochastic linear systems. Int. J. Control 2010, 83, 2564–2572. [Google Scholar] [CrossRef]
- Sakthivel, R.; Nieto, J.J.; Mahmudov, N.I. Approximate controllability of nonlinear deterministic and stochastic systems with unbounded delay. Taiwan J. Math. 2010, 14, 1777–1797. [Google Scholar] [CrossRef]
- Liu, F.; Peng, S.G. On controllability for stochastic control systems when the cofficient is time-varying. J. Syst. Sci. Complex. 2010, 23, 270–278. [Google Scholar] [CrossRef]
- Liu, Q. Some results on the controllability of forward stochastic heat equations with control on the drift. J. Funct. Anal. 2011, 260, 832–851. [Google Scholar] [CrossRef]
- Sathya, R.; Balach, R.K. Controllability of neutral impulsive Ito type stochastic integrodifferential systems. Vietnam J. Math. 2013, 41, 59–80. [Google Scholar] [CrossRef]
- Liu, Q. Exact controllability for stochastic Schrodinger equations. J. Differ. Equ. 2013, 255, 2484–2504. [Google Scholar] [CrossRef]
- Liu, X. Controllability of some coupled stochastic parabolic systems with fractional order spatial differential operators by one control in the drift. SIAM J. Control Optim. 2014, 52, 836–860. [Google Scholar] [CrossRef]
- Liu, Q. Exact controllability for stochastic transport equations. SIAM J. Control Optim. 2014, 255, 397–419. [Google Scholar] [CrossRef]
- Ning, H.; Qing, G. Approximate controllability of nonlinear stochastic partial differential systems with infinite delay. Adv. Differ. Equ. 2015, 85, 1–25. [Google Scholar] [CrossRef]
- Gao, P.; Chen, M.; Li, Y. Observability estimates and null controllability for forward and backward linear stochastic Kuramoto-Sivashinsky equations. SIAM J. Control Optim. 2015, 53, 475–500. [Google Scholar] [CrossRef]
- Das, S.P.; Ey, D.; Sukavanam, N. Existence of solution and approximate controllability of a second order neutral stochastic differential equation with state dependent delay. Acta Math. Sci. 2016, 36B, 1509–1523. [Google Scholar] [CrossRef]
- Fu, X.; Liu, X. Controllability and observability of some complex Ginzburg-Landau equations. SIAM J. Control Optim. 2017, 55, 1102–1127. [Google Scholar] [CrossRef]
- Mokkedem, F.Z.; Fu, X. Approximate controllability for a semilinear stochastic evolution systems with infinite delay in Lp space. Appl. Math. Optim. 2017, 75, 253–283. [Google Scholar] [CrossRef]
- Klamka, J.; Wyzwal, J.; Zawiski, R. On controllability of second order dynamical systems-a survey. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 279–295. [Google Scholar] [CrossRef]
- Klamka, J. Stochastic controllability of linear systems with state delays. Int. J. Appl. Math. Comput. Sci. 2007, 17, 5–13. [Google Scholar] [CrossRef]
- Liu, L.Y.; Liu, X. Controllability and observability of some coupled stochastic parabolic system. Math. Control Relat. Fields 2018, 8, 829–854. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Yang, D.H.; Yong, J.M.; Yu, Z.Y. Exact controllability of linear stochastic differential equations and related problems. Math. Control Relat. Fields 2017, 7, 305–345. [Google Scholar] [CrossRef]
- Barbu, V.; Tubaro, L. Exact controllability of stochastic equations with multiplicative noise. Syst. Control Lett. 2018, 122, 19–23. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhou, X.X. Exact controllability of stochastic differential equations with memory. Syst. Control Lett. 2020, 142, 1–10. [Google Scholar] [CrossRef]
- Sirbu, M.; Tessitore, G. Null controllability of an infinite dimensional SDE with state and control-dependent noise. Syst. Control Lett. 2001, 44, 385–394. [Google Scholar] [CrossRef]
- Shen, L.J.; Li, C.X.; Wang, L. Some remarks on the controllability of linear stochastic systems. In Proceedings of the 34th Chinese Control Conference, Hangzhou, China, 28–30 July 2015; pp. 598–601. [Google Scholar]
- Dou, F.F.; Lu, Q. Partial approximate controllability for linear stochastic control systems. SIAM J. Control Optim. 2019, 57, 1209–1229. [Google Scholar] [CrossRef]
- Gashi, B.; Pantelous, A.A. Linear backward stochastic differential equations of descriptor type: Regular systems. Stoch. Anal. Appl. 2013, 31, 142–166. [Google Scholar] [CrossRef]
- Gashi, B.; Pantelous, A.A. Linear stochastic systems of descriptor type: Theory and applications, safety, reliability, risk and life-cycle performance of structure and infrastructures. In Proceedings of the 11th International Conference on Structure Safety and Reliability, ICOSSAR 2013, New York, NY, USA, 16–20 June 2013; pp. 1047–1054. [Google Scholar]
- Gashi, B.; Pantelous, A.A. Linear backward stochastic differential systems of descriptor type with structure and applications to engineering. Probab. Eng. Mech. 2015, 40, 1–11. [Google Scholar] [CrossRef]
- Xing, S.Y.; Zhang, Q.L. Stability and exact observability of discrete stochastic singular systems based on generalized Lyapunov equations. IET Control Theory Appl. 2016, 10, 971–980. [Google Scholar] [CrossRef]
- Ge, Z.Q.; Ge, X.C. An exact null controllability of stochastic singular systems. Sci. China Inf. Sci. 2021, 64, 179202:1–179202:3. [Google Scholar] [CrossRef]
- Ge, Z.Q. Impulse controllability and impulse observability of stochastic singular systems. J. Syst. Sci. Complex. 2021, 34, 899–911. [Google Scholar] [CrossRef]
- Liaskos, K.B.; Pantelous, A.A.; Stratis, I.G. Linear stochastic degenerate Sobolev equations and applications. Int. J. Control 2015, 88, 2538–2553. [Google Scholar] [CrossRef]
- Liaskos, K.B.; Stratis, I.G.; Pantelous, A.A. Stochastic degenerate Sobolev equations: Well posedness and exact controllability. Math. Meth. Appl. Sci. 2018, 41, 1025–1032. [Google Scholar] [CrossRef]
- Ge, Z.Q. Controllability and observability of stochastic singular systems in Banach spaces. J. Syst. Sci. Complex 2022, 35, 194–204. [Google Scholar] [CrossRef]
- Ge, Z.Q. Exact observability and stability of stochastic implicit systems. Syst. Control Lett. 2021, 157, 1–7. [Google Scholar] [CrossRef]
- Ge, Z.Q. GE-semigroup method for controllability of stochastic descriptor linear systems. Sci. China Inf. Sci. 2021, accepted. [Google Scholar] [CrossRef]
- Ge, Z.Q. GE-evolution operator method for controllability of time varying stochastic descriptor linear systems in Hilbert spaces. IMA J. Math. Control Inf. 2022, 39, 80–92. [Google Scholar] [CrossRef]
- Ge, Z.Q. Controllability and observability of stochastic implicit systems and stochastic GE-evolution operator. Numer. Algebra Control Optim. 2022, 12, 339–351. [Google Scholar] [CrossRef]
- Ge, Z.Q. Review of the latest progress in controllability of stochastic linear systems and stochastic GE-evolution operator. Mathematics 2021, 9, 1–42. [Google Scholar] [CrossRef]
- Rajivganthi, C.; Muthukumar, P.; Rihan, F.A. Existence and approximate controllability of stochastic semilinear reaction diffusion systems. Int. J. Dynam. Control 2017, 5, 653–660. [Google Scholar] [CrossRef]
- Anguraj, A.; Ramkumar, K. Approximate controllability of semilinear stochastic integrodifferential system with nonlocal conditions. Fractal Fract. 2018, 29, 1–13. [Google Scholar] [CrossRef]
- Anguraj, A.; Ravikumar, K.; Baleanu, D. Approximate controllability of a semilinear impulsive stochastic system with nonlocal conditions and Poisson jumps. Adv. Differ. Equ. 2020, 65, 1–13. [Google Scholar] [CrossRef]
- Shukla, A.; Sukavanam, N.P.; Ey, D.N. Controllability of semilinear stochastic control system with finite delay. IMA J. Math. Control Inf. 2018, 35, 427–449. [Google Scholar] [CrossRef]
- Mokkedem, F.Z.; Fu, X. Approximate controllability for a retarded semilinear stochastic evolution system. IMA J. Math. Control Inf. 2019, 36, 285–315. [Google Scholar] [CrossRef]
- Su, X.; Fu, X. Approximate controllability for semilinear second order stochastic evolution systems with infinite delay. Int. J. Control 2020, 93, 1558–1569. [Google Scholar] [CrossRef]
- Huang, H.; Fu, X. Approximate controllability of semi-linear stochastic integro-differential equations with infinite delay. IMA J. Math. Control Inf. 2020, 37, 1133–1167. [Google Scholar] [CrossRef]
- Bashirov, A.E. C-controllability of stochastic semilinear systems. Math. Method Appl. Sci. 2021. [Google Scholar] [CrossRef]
- Dzektser, E.S. Generalization of the equation of motion of ground waters with a free surface. Engl. Transl. Soviet Phys. Dokl 1972, 17, 108–110. [Google Scholar]
- Ge, Z.Q.; Ge, X.C.; Zhang, J.F. Approximate controllability and approximate observability of singular distributed parameter systems. IEEE Trans. Autom. Control 2020, 65, 2294–2299. [Google Scholar] [CrossRef]
- Ge, Z.Q. Exact controllability and exact observability of descriptor infinite dimensional systems. IEEE/CAA J. Autom. Sin. 2021, 12, 1956–1963. [Google Scholar] [CrossRef]
- Arora, U.; Sukavanam, N. Approximate controllability of non-densely defined semilinear control system with nonlocal conditions. Nonlinear Dyn. Syst. Theory 2017, 17, 5–18. [Google Scholar]
- Ge, Z.Q.; Feng, D.X. Well-posed problem of nonlinear singular distributed parameter systems and nonlinear GE-semigroup. Sci. China Ser. F Inf. Sci. 2013, 56, 1–14. [Google Scholar] [CrossRef]
- Ge, Z.Q.; Feng, D.X. Well-posed problem of nonlinear time varying singular distributed parameter systems. Sci. Sin. Math. 2014, 44, 1277–1298. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, X. Mathematical Control Theory for Stochastic Partial Differential Equations; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Ge, Z.Q.; Feng, D.X. Solvability of a time-varying singular distributed parameter systems in Banach space. Sci. China Inf. Sci. 2013, 43, 386–406. [Google Scholar]
- Nussbaum, R.P. The fixed point index and asymptotic fixed point theorems for k-set contractions. Bull. Am. Math. Soc. 1969, 75, 490–495. [Google Scholar] [CrossRef]
- Da Prato, G.; Zabczyk, J. Stochastic Equations in Infinite Dimensions; Cambridge University Press: London, UK, 1992. [Google Scholar]
- Lu, Q.; Zhang, X. General Pontryagin-Type Stochastic Maximum Principle and Backward Stochastic Evolution Equations in Infinite Dimensions; Springer: New York, NY, USA, 2014. [Google Scholar]
- Ahmed, N.U. Stochastic control on Hilbert space for linear evolution equations with random operator valued coefficients. SIAM J. Control Optim. 1981, 19, 401–430. [Google Scholar] [CrossRef]
- Curtain, R.; Zwart, H.J. An Introduction to Infinite Dimensional Linear Systems Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Barcenas, D.I.; Leiva, H.; Urbina, W. Controllability of the Ornstein-Uhlenbeck equation. IMA J. Math. Control Inf. 2006, 23, 1–9. [Google Scholar] [CrossRef]
- Ge, Z.Q.; Zhu, G.T.; Feng, D.X. Generalized operator semigroup and well-posedness of singular distributed parameter systems. Sci. Sin. Math. 2010, 40, 477–495. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, Z. Approximate Controllability of Semilinear Stochastic Generalized Systems in Hilbert Spaces. Mathematics 2022, 10, 3050. https://doi.org/10.3390/math10173050
Ge Z. Approximate Controllability of Semilinear Stochastic Generalized Systems in Hilbert Spaces. Mathematics. 2022; 10(17):3050. https://doi.org/10.3390/math10173050
Chicago/Turabian StyleGe, Zhaoqiang. 2022. "Approximate Controllability of Semilinear Stochastic Generalized Systems in Hilbert Spaces" Mathematics 10, no. 17: 3050. https://doi.org/10.3390/math10173050
APA StyleGe, Z. (2022). Approximate Controllability of Semilinear Stochastic Generalized Systems in Hilbert Spaces. Mathematics, 10(17), 3050. https://doi.org/10.3390/math10173050