Recovering a Space-Dependent Source Term in the Fractional Diffusion Equation with the Riemann–Liouville Derivative
Abstract
:1. Introduction
2. Preliminaries
3. Ill-Posedness and Conditional Stability
4. Fractional Tikhonov Regularization Method and Convergence Estimates
- Case 1. When , it is the quasi-boundary value method [55].
- Case 2. When , it is the classical Tikhonov regularization method [56].
4.1. A Priori Convergence Estimate
4.2. A Posteriori Convergence Estimate
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Boston, MA, USA, 2012. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Debnath, L. Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003, 54, 3413–3442. [Google Scholar] [CrossRef]
- Baleanu, D.; Ghafarnezhad, K.; Rezapour, S.; Shabibi, M. On a strong-singular fractional differential equation. Adv. Differ. Equ. 2020, 350, 1–18. [Google Scholar] [CrossRef]
- Dokuchaev, N. On recovering parabolic diffusions from their time-averages. Calc. Var. Partial. Differ. Equ. 2019, 58, 27. [Google Scholar] [CrossRef]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2014. [Google Scholar]
- Klann, E.; Maass, P.; Ramlau, R. Two-step regularization methods for linear inverse problems. J. Inverse Ill-Posed Probl. 2006, 14, 583–607. [Google Scholar] [CrossRef]
- De Staelen, R.H.; Hendy, A. Numerical pricing double barrier options in a time-fractional Black-Scholes model. Comput. Math. Appl. 2017, 74, 1166–1175. [Google Scholar] [CrossRef]
- Luchko, Y. Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 2011, 14, 110–124. [Google Scholar] [CrossRef]
- Luchko, Y. Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 2010, 59, 1766–1772. [Google Scholar] [CrossRef]
- Jin, B.T.; Lazarov, R.; Zhou, Z. Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 2013, 51, 445–466. [Google Scholar] [CrossRef]
- Lin, Y.M.; Xu, C.J. Fininte difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Foondun, M. Remarks on a fractional-time stochastic equation. Proc. Am. Math. Soc. 2021, 149, 2235–2247. [Google Scholar] [CrossRef]
- Thach, T.N.; Tuan, N.H. Stochastic pseudo-parabolic equations with fractional derivative and fractional Brownian motion. Stoch. Anal. Appl. 2021, 40, 328–351. [Google Scholar] [CrossRef]
- Tuan, N.H.; Phuong, N.D.; Thach, T.N. New well-posedness results for stochastic delay Rayleigh-Stokes equations. Discret. Contin. Dyn. Syst.-B 2022. [Google Scholar] [CrossRef]
- Thach, T.N.; Kumar, D.; Luc, N.H.; Tuan, N.H. Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise. Discret. Contin. Dyn. Syst.-S 2022, 15, 481–499. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Inverse source problem for a fractional diffusion equation. Inverse Probl. 2011, 27, 035010. [Google Scholar] [CrossRef]
- Wei, T.; Li, X.L.; Li, Y.S. An inverse time-dependent source problem for a time-fractional diffusion equation. Inverse Probl. 2016, 32, 085003. [Google Scholar] [CrossRef]
- Liu, J.J.; Yamamoto, M. A backward problem for the time-fractional diffusion equation. Appl. Anal. 2010, 89, 1769–1788. [Google Scholar] [CrossRef]
- Trong, D.D.; Hai, D.N.D. Backward problem for time-space fractional diffusion equations in Hilbert scales. Comput. Math. Appl. 2021, 93, 253–264. [Google Scholar] [CrossRef]
- Zheng, G.H.; Wei, T. Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation. J. Comput. Appl. Math. 2010, 233, 2631–2640. [Google Scholar] [CrossRef]
- Zheng, G.H.; Wei, T. A new regularization method for a Cauchy problem of the time fractional diffusion equation. Adv. Comput. Math. 2012, 36, 377–398. [Google Scholar] [CrossRef]
- Li, G.S.; Zhang, D.L.; Jia, X.Z.; Yamamoto, M. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation. Inverse Probl. 2013, 29, 065014. [Google Scholar] [CrossRef]
- Jin, B.T.; Kian, Y. Recovery of the order of derivation for fractional diffusion equations in an unknown medium. SIAM J. Appl. Math. 2022. [Google Scholar] [CrossRef]
- Jin, B.T.; Kian, Y. Recovering multiple fractional orders in time-fractional diffusion in an unknown medium. Proc. R. Soc. 2021. [Google Scholar] [CrossRef]
- Krasnoschok, M.; Pereverzyev, S.; Siryk, S.V.; Vasylyeva, N. Regularized reconstruction of the order in semilinear subdiffusion with memory. In Proceedings of the International Conference on Inverse Problems 2018: Inverse Problems and Related Topics; Springer: Singapore, 2020; pp. 205–236. [Google Scholar] [CrossRef]
- Krasnoschok, M.; Pereverzyev, S.; Siryk, S.V.; Vasylyeva, N. Determination of the fractional order in semilinear subdiffusion equations. Fract. Calc. Appl. Anal. 2020, 23, 694–722. [Google Scholar] [CrossRef]
- Gu, W.; Wei, F.; Li, M. Parameter estimation for a type of fractional diffusion equation based on compact difference scheme. Symmetry 2022, 14, 560. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Sakamoto, K.; Yamamoto, M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 2011, 382, 426–447. [Google Scholar] [CrossRef]
- Cannon, J.R.; Duchateau, P. Structural identification of an unknown source term in a heat equation. Inverse Probl. 1998, 14, 535–551. [Google Scholar] [CrossRef]
- Erdem, A.; Lesnic, D.; Hasanov, A. Identification of a spacewise dependent heat source. Appl. Math. Model. 2013, 37, 10231–10244. [Google Scholar] [CrossRef]
- Johansson, T.; Lesnic, D. Determination of a spacewise dependent heat source. J. Comput. Appl. Math. 2007, 209, 66–80. [Google Scholar] [CrossRef] [Green Version]
- Slodička, M. Uniqueness for an inverse source problem of determing a space dependent source in a non-autonomous parabolic equation. Appl. Math. Lett. 2020, 107, 106395. [Google Scholar] [CrossRef]
- Yan, L.; Fu, C.L.; Yang, F.L. The method of fundamental solutions for the inverse heat source problem. Eng. Anal. Bound. Elem. 2008, 32, 216–222. [Google Scholar] [CrossRef]
- Yi, Z.; Murio, D.A. Source term identification in 1-D IHCP. Comput. Math. Appl. 2004, 47, 1921–1933. [Google Scholar] [CrossRef]
- Wang, J.G.; Zhou, Y.B.; Wei, T. Two regularization methods to identify a space-dependent source for the time-fractional diffusion equation. Appl. Numer. Math. 2013, 68, 39–57. [Google Scholar] [CrossRef]
- Wei, T.; Wang, J.G. A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. Appl. Numer. Math. 2014, 78, 95–111. [Google Scholar] [CrossRef]
- Wang, J.G.; Wei, T. Quasi-reversibility method to identify a space-dependent source for the time-fractional diffusion equation. Appl. Math. Model. 2015, 39, 6139–6149. [Google Scholar] [CrossRef]
- Wang, J.G.; Ran, Y.H. An iterative method for an inverse source problem of time-fractional diffusion equation. Inverse Probl. Sci. Eng. 2018, 26, 1509–1521. [Google Scholar] [CrossRef]
- Xiong, X.T.; Xue, X.M. A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation. Appl. Math. Comput. 2019, 349, 292–303. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Wei, T. Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl. Math. Comput. 2013, 219, 5972–5983. [Google Scholar] [CrossRef]
- Yang, F.; Fu, C.L.; Li, X.X. A mollification regularization method for unknown source in time-fractional diffusion equation. Int. J. Comput. Math. 2014, 91, 1516–1534. [Google Scholar] [CrossRef]
- Yang, F.; Fu, C.L. The quasi-reversibility regularization method for identifying the unknown source for time fractional diffusion equation. Appl. Math. Model. 2015, 39, 1500–1512. [Google Scholar] [CrossRef]
- Yang, F.; Fu, C.L.; Li, X.X. The inverse source problem for time-fractional diffusion equation: Stability analysis and regularization. Inverse Probl. Sci. Eng. 2015, 23, 969–996. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Le, D.L.; Nguyen, V.T. Regularized solution of an inverse source problem for a time fractional diffusion equation. Appl. Math. Model. 2016, 40, 8244–8264. [Google Scholar] [CrossRef]
- Ruan, Z.S.; Wang, Z.W. Identification of a time-dependent source term for a time fractional diffusion problem. Appl. Anal. 2017, 96, 1638–1655. [Google Scholar] [CrossRef]
- Yang, F.; Liu, X.; Li, X.X.; Ma, C.Y. Landweber iterative regularization method for identifying the unknown source of the time-fractional diffusion equation. Adv. Differ. Equ. 2017, 388, 1–15. [Google Scholar] [CrossRef]
- Yang, F.; Ren, Y.P.; Li, X.X. Landweber iterative method for identifying a space-dependent source for the time-fractional diffusion equation. Bound. Value Probl. 2017, 163, 1–19. [Google Scholar] [CrossRef]
- Ma, Y.K.; Prakash, P.; Deiveegan, A. Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation. Chaos Soliton Fract. 2018, 108, 39–48. [Google Scholar] [CrossRef]
- Luc, N.H.; Baleanu, D.; Agarwal, R.P.; Long, L.D. Identifying the source function for time fractional diffusion with non-local in time conditions. Comput. Appl. Math. 2021, 40, 5. [Google Scholar] [CrossRef]
- Mace, D.; Lailly, P. Solution of the VSP one-dimensional inverse problem. Geophys. Prospect. 1986, 34, 1002–1021. [Google Scholar] [CrossRef]
- Andrle, M.; El Badia, A. Identification of multiple moving pollution sources in surface waters or atmospheric media with boundary observations. Inverse Probl. 2012, 28, 075009. [Google Scholar] [CrossRef]
- Tuan, N.H.; Zhou, Y.; Long, L.D.; Can, N.H. Identifying inverse source for fractional diffusion equation with Riemann-Liouville derivative. Comput. Appl. Math. 2020, 39, 75. [Google Scholar] [CrossRef]
- Liu, S.S.; Sun, F.Q.; Feng, L.X. Regularization of inverse source problem for fractional diffusion equation with Riemann-Liouville derivative. Comput. Appl. Math. 2021, 40, 112. [Google Scholar] [CrossRef]
- Klann, E.; Ramlau, R. Regularization by fractional filter methods and data smoothing. Inverse Probl. 2008, 24, 025018. [Google Scholar] [CrossRef]
- Xiong, X.T.; Xue, X.M. Fractional Tikhonov method for an inverse time-fractional diffusion problem in 2-dimensional space. Bull. Malays. Math. Sci. Soc. 2020, 43, 25–38. [Google Scholar] [CrossRef]
- Yang, F.; Pu, Q.; Li, X.X. The fractional Tikhonov regularization methods for identifying the initial value problem for a time-fractional diffusion equation. J. Comput. Appl. Math. 2020, 380, 112998. [Google Scholar] [CrossRef]
- Zheng, G.H.; Zhang, Q.G. Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method. Math. Comput. Simulat. 2018, 148, 37–47. [Google Scholar] [CrossRef]
- Qian, Z.; Feng, X.L. A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation. Appl. Anal. 2017, 96, 1656–1668. [Google Scholar] [CrossRef]
- Pollard, H. The completely monotonic character of the Mittag-Leffler function Eα(-x). Bull. Am. Math. Soc. 1948, 54, 1115–1116. [Google Scholar] [CrossRef] [Green Version]
- Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems, 2nd ed.; Volume 120 of Applied Mathematical Sciences; Springer: New York, NY, USA, 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S. Recovering a Space-Dependent Source Term in the Fractional Diffusion Equation with the Riemann–Liouville Derivative. Mathematics 2022, 10, 3213. https://doi.org/10.3390/math10173213
Liu S. Recovering a Space-Dependent Source Term in the Fractional Diffusion Equation with the Riemann–Liouville Derivative. Mathematics. 2022; 10(17):3213. https://doi.org/10.3390/math10173213
Chicago/Turabian StyleLiu, Songshu. 2022. "Recovering a Space-Dependent Source Term in the Fractional Diffusion Equation with the Riemann–Liouville Derivative" Mathematics 10, no. 17: 3213. https://doi.org/10.3390/math10173213
APA StyleLiu, S. (2022). Recovering a Space-Dependent Source Term in the Fractional Diffusion Equation with the Riemann–Liouville Derivative. Mathematics, 10(17), 3213. https://doi.org/10.3390/math10173213