Intelligent Multi-Strategy Hybrid Fuzzy K-Nearest Neighbor Using Improved Hybrid Sine Cosine Algorithm
Abstract
:1. Introduction
- In this paper, reverse learning will be implemented into an SCA model to form a hybrid SCA. In this context, the adaptive weight coupled with the reverse learning alter the position of the solution towards the global solution.
- The proposed hybrid SCA will be implemented into a fuzzy k-nearest neighbor (SCA-FKNN). In this context, the proposed SCA-FKNN has the ability to avoid local convergence by jumping out of the current non-optimal solution.
- The performance of the proposed SCA-FKNN will be tested using various real life datasets. SCA-FKNN will be evaluated according to the various performance metrics, such as accuracy, precision, sensitivity, specificity, Mathews correlation coefficient and Wilcoxon signed rank test. In addition, the proposed SCA-FKNN will be compared with the existing conventional state-of-the-art classifier.
2. Background
2.1. Sine Cosine Algorithm
2.2. Fuzzy K-Nearest Neighbors (FKNN)
3. The Proposed Method
3.1. The Weight Factor
3.2. Reverse Learning
- The individuals in the population were arranged after the implementation of formula , where 10% of the excellent individuals were selected to form the elite population ;
- Individual boundary and the dynamic boundary were calculated;
- The dynamic elite reverse population of individual was generated according to Equation (10);
- If the reverse population exceeded the limit of dynamic boundary , it was replaced by a new individual randomly generated in the boundary;
- The top 50% from was selected for the next generation according to ;
- Steps 2 and 5 were cycled until the stop condition was reached, and the algorithm ended.
3.3. The Proposed Hybrid SCA FKNN Model
Algorithm 1: The hybrid SCA-FKNN. |
whiledo |
update |
if then |
if then |
if then |
else |
end if |
end if |
for i = 1 to do |
generate random k, |
end for |
put all into train dataset as elite opposition solutions |
else |
As the up, the same progress |
end if |
end while |
4. Experiment and Discussion
4.1. Experiment Setup
4.2. Benchmark Datasets
4.3. Performance Metrics
4.4. Baseline Methods
4.5. Experimental Design
5. Results and Discussion
5.1. Numerical Results for Two-Classes Datasets
5.1.1. Experimental Results on the Bupa Dataset
5.1.2. Experimental Results on the Hepatitis Dataset
5.1.3. Experimental Results on the SPECT Dataset
5.2. Numerical Results for Multi-Classes Datasets
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Notation | Explanation |
Hybrid SCA | The hybrid algorithm proposed based on the sine cosine algorithm and reverse learning |
SCA | Sine cosine algorithm |
LSCA | The linear population size reduction sine and cosine algorithm |
PSO | Particle swarm optimization |
BA | Bat algorithm |
SSA | Sparrow search algorithm |
SA | Salp swarm algorithm |
CGSCA | Cauchy and Gaussian sine cosine optimization |
FKNN | Fuzzy k-nearest neighbor |
Appendix A
MaxFEs | Datasets | Metric | ACC | Precision | Sensitive | Specificity | MCC |
---|---|---|---|---|---|---|---|
5 | Hepatitis dataset | avg | 0.8280 | 0.5417 | 0.2142 | 0.9583 | 0.2426 |
std | 0.0660 | 0.1021 | 0.1241 | 0.0417 | 0.1102 | ||
Bupa dataset | avg | 0.6663 | 0.6245 | 0.4947 | 0.7913 | 0.2985 | |
std | 0.0366 | 0.0625 | 0.0949 | 0.0367 | 0.0738 | ||
SPECT dataset | avg | 0.5934 | 0.5667 | 0.7164 | 0.4515 | 0.1978 | |
std | 0.1287 | 0.1115 | 0.2763 | 0.1400 | 0.2842 | ||
10 | Hepatitis dataset | avg | 0.8017 | 0.6667 | 0.2564 | 0.9420 | 0.2785 |
std | 0.0501 | 0.0946 | 0.0943 | 0.1004 | 0.0954 | ||
Bupa dataset | avg | 0.6979 | 0.7000 | 0.5122 | 0.8364 | 0.372 | |
std | 0.0483 | 0.0486 | 0.0643 | 0.0303 | 0.0514 | ||
SPECT dataset | avg | 0.5934 | 0.5515 | 0.7655 | 0.4344 | 0.2248 | |
std | 0.1077 | 0.0973 | 0.1998 | 0.1534 | 0.2218 | ||
20 | Hepatitis dataset | avg | 0.8526 | 0.5833 | 0.4500 | 0.9472 | 0.4149 |
std | 0.0412 | 0.0174 | 0.0500 | 0.0273 | 0.0540 | ||
Bupa dataset | avg | 0.7576 | 0.6500 | 0.5909 | 0.8409 | 0.4429 | |
std | 0.0582 | 0.0284 | 0.0299 | 0.0283 | 0.0303 | ||
SPECT dataset | avg | 0.6127 | 0.5681 | 0.7524 | 0.4601 | 0.2353 | |
std | 0.1038 | 0.0951 | 0.0999 | 0.0706 | 0.0937 |
Fold Cross-Validation | Datasets | Metric | ACC | Precision | Sensitive | Specificity | MCC |
---|---|---|---|---|---|---|---|
K = 3 | Hepatitis dataset | avg | 0.8065 | 0.5000 | 0.2001 | 0.9872 | 0.2418 |
std | 0.0559 | 0.1421 | 0.0854 | 0.0222 | 0.1120 | ||
Bupa dataset | avg | 0.6338 | 0.6775 | 0.5295 | 0.8276 | 0.3751 | |
std | 0.0692 | 0.1268 | 0.1104 | 0.0599 | 0.1517 | ||
SPECT dataset | avg | 0.6617 | 0.6553 | 0.7456 | 0.5931 | 0.3701 | |
std | 0.1165 | 0.0998 | 0.2663 | 0.1623 | 0.2376 | ||
K = 5 | Hepatitis dataset | avg | 0.7957 | 0.5222 | 0.2762 | 0.9338 | 0.2673 |
std | 0.0186 | 0.1347 | 0.1288 | 0.0426 | 0.0877 | ||
Bupa dataset | avg | 0.6663 | 0.6245 | 0.495 | 0.7913 | 0.2985 | |
std | 0.0366 | 0.0625 | 0.0949 | 0.0367 | 0.0738 | ||
SPECT dataset | avg | 0.5934 | 0.5667 | 0.7164 | 0.4515 | 0.1978 | |
std | 0.1287 | 0.1115 | 0.2763 | 0.1400 | 0.2842 | ||
K = 8 | Hepatitis dataset | avg | 0.8065 | 0.7222 | 0.2050 | 0.9725 | 0.3000 |
std | 0.0645 | 0.2546 | 0.0556 | 0.0242 | 0.0343 | ||
Bupa dataset | avg | 0.6717 | 0.6310 | 0.4786 | 0.8075 | 0.3033 | |
std | 0.0544 | 0.0938 | 0.0879 | 0.0456 | 0.1204 | ||
SPECT dataset | avg | 0.5826 | 0.5176 | 0.8714 | 0.4172 | 0.3164 | |
std | 0.1134 | 0.2038 | 0.1384 | 0.2307 | 0.1509 |
References
- Wang, C.-N.; Yang, F.-C.; Nguyen, V.T.T.; Nguyen, Q.M.; Huynh, N.T.; Huynh, T.T. Optimal design for compliant mechanism flexure hinges: Bridge-type. Micromachines 2021, 12, 1304. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Huynh, N.-T.; Vu, N.-C.; Kieu, V.N.; Huang, S.-C. Optimizing compliant gripper mechanism design by employing an effective bi-algorithm: Fuzzy logic and anfis. Microsyst. Technol. 2021, 27, 3389–3412. [Google Scholar] [CrossRef]
- Chau, N.L.; Dao, T.-P.; Nguyen, V.T.T. Optimal design of a dragonfly-inspired compliant joint for camera positioning system of nanoindentation tester based on a hybrid integration of jaya-anfis. Math. Probl. Eng. 2018, 2018, 8546095. [Google Scholar] [CrossRef]
- Liu, H.; Wen, Z.; Cai, W. Fastpso: Towards efficient swarm intelligence algorithm on GPUs. In Proceedings of the ICPP 2021: 50th International Conference on Parallel Processing, Lemont, IL, USA, 9–12 August 2021. [Google Scholar]
- Du, Y.; Chen, W.; Fan, B. Research and application of swarm intelligence algorithm in path planning. Electron. Meas. Technol. 2016, 39, 65–70. [Google Scholar]
- Duan, H.; Qiao, P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 2014, 7, 24–37. [Google Scholar] [CrossRef]
- Xu, H.; Guan, H.; Liang, A.; Yan, X. A multi-robot pattern formation algorithm based on distributed swarm intelligence. In Proceedings of the 2010 Second International Conference on Computer Engineering and Applications, Bali, Indonesia, 19–21 March 2010; IEEE: Piscataway, NJ, USA, 2010; Volume 1, pp. 71–75. [Google Scholar]
- Verma, O.P.; Gupta, S.; Goswami, S.; Jain, S. Opposition based modified particle swarm optimization algorithm. In Proceedings of the 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Delhi, India, 3–5 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Wang, X.; Li, Z.Y.; Xu, G.Y.; Yan, W. Artificial bee colony algorithm based on chaos local search operator. J. Comput. Appl. 2012, 32, 1033–1036. [Google Scholar] [CrossRef]
- Xu, Y.; Zhou, J.; Xue, X.; Fu, W.; Li, C. An adaptively fast fuzzy fractional order pid control for pumped storage hydro unit using improved gravitational search algorithm. Energy Convers. Manag. 2016, 111, 67–78. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A novel meta-heuristic optimization algorithm: Thermal exchange optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Mirjalili, S. Sca: A sine cosine algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Yong, L.I.U.; Liang, M.A. Sine cosine algorithm with nonlinear decreasing conversion parameter. Comput. Eng. Appl. 2017, 53, 1–5. [Google Scholar]
- Cong, C.; Liang, M.; Yong, L.; School, B. Quantum sine cosine algorithm for function optimization. Appl. Res. Comput. 2017, 34, 3214–3218. [Google Scholar]
- Abd Elaziz, M.; Oliva, D.; Xiong, S. An improved opposition-based sine cosine algorithm for global optimization. Expert Syst. Appl. Int. J. 2017, 90, 484–500. [Google Scholar] [CrossRef]
- Singh, N.; Singh, S.B. A novel hybrid gwo-sca approach for optimization problems. Eng. Sci. Technol. Int. J. 2017, 20, 1586–1601. [Google Scholar] [CrossRef]
- Abd Elaziz, M.E.; Ewees, A.A.; Oliva, D.; Duan, P.; Xiong, S. A hybrid method of sine cosine algorithm and differential evolution for feature selection. In Proceedings of the international Conference on Neural Information Processing, Long Beach, CA, USA, 4–9 December 2017; Springer: Cham, Switzerland, 2017; pp. 145–155. [Google Scholar]
- Rizk-Allah, R.M. Hybridizing sine cosine algorithm with multi-orthogonal search strategy for engineering design problems. J. Comput. Des. Eng. 2017, 5, 249–273. [Google Scholar] [CrossRef]
- Long, W.; Wu, T.; Liang, X.; Xu, S. Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Syst. Appl. 2019, 123, 108–126. [Google Scholar] [CrossRef]
- Nenavath, H.; Jatoth, R.K. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl. Soft Comput. 2018, 62, 1019–1043. [Google Scholar] [CrossRef]
- Wu, S.; Mao, P.; Li, R.; Cai, Z.; Chen, X. Evolving fuzzy k-nearest neighbors using an enhanced sine cosine algorithm: Case study of lupus nephritis. Comput. Biol. Med. 2021, 135, 104582. [Google Scholar] [CrossRef]
- Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, 4, 580–585. [Google Scholar] [CrossRef]
- Lin, J.; He, Q. Mixed strategy to improve sine cosine algorithm. Appl. Res. Comput. 2020, 37, 6. [Google Scholar]
- Wachowiak, M.P.; Smolíková, R.; Zheng, Y.; Zurada, J.M.; Elmaghraby, A.S. An approach to multimodal biomedical image registration utilizing particle swarm optimization. Evol. Comput. IEEE Trans. 2004, 8, 289–301. [Google Scholar] [CrossRef]
- Faris, H.; Mafarja, M.M.; Heidari, A.A.; Aljarah, I.; Fujita, H. An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl. -Based Syst. 2018, 154, 43–67. [Google Scholar] [CrossRef]
- Jha, K.; Saha, S. Incorporation of multimodal multiobjective optimization in designing a filter based feature selection technique. Appl. Soft Comput. 2021, 98, 106823. [Google Scholar] [CrossRef]
- Kasihmuddin, M.S.M.; Jamaludin, S.Z.M.; Mansor, M.A.; Wahab, H.A.; Ghadzi, S.M.S. Supervised learning perspective in logic mining. Mathematics 2020, 10, 915. [Google Scholar] [CrossRef]
- Yang, G. A modified particle swarm optimizer algorithm. In Proceedings of the 2007 8th International Conference on Electronic Measurement and Instruments, Warsaw, Poland, 1–3 May 2007; IEEE: Piscataway, NJ, USA, 2007; Volume 2, pp. 675–679. [Google Scholar]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control. Eng. Open Access J. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Yang, X.S. Binary bat algorithm. Neural Comput. Appl. 2014, 25, 663–681. [Google Scholar] [CrossRef]
- Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B. Single sensor-based mppt of partially shaded pv system for battery charging by using cauchy and gaussian sine cosine optimization. IEEE Trans. Energy Convers. 2017, 32, 983–992. [Google Scholar] [CrossRef]
- Gupta, S.; Deep, K. A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst. Appl. 2019, 119, 210–230. [Google Scholar] [CrossRef]
- Wsa, B.; Zq, B.; Aahc, D.; Hc, E.; Ht, F.; Yt, A. Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowl. -Based Syst. 2020, 214, 106728. [Google Scholar]
- Jamaludin, S.Z.M.; Romli, N.A.; Kasihmuddin, M.S.M.; Baharum, A.; Mansor, M.A.; Marsani, M.F. Novel logic mining incorporating log linear approach. J. King Saud-Univ. -Comput. Inf. Sci. 2022. [Google Scholar] [CrossRef]
- Jamaludin, S.Z.M.; Kasihmuddin, M.S.M.; Ismail, A.I.M.; Mansor, M.A.; Basir, M.F.M. Energy based logic mining analysis with hopfield neural network for recruitment evaluation. Entropy 2020, 23, 40. [Google Scholar] [CrossRef]
- Zamri, N.E.; Mansor, M.A.; Kasihmuddin, M.S.M.; Alway, A.; Jamaludin, S.Z.M.; Alzaeemi, S.A. Amazon employees resources access data extraction via clonal selection algorithm and logic mining approach. Entropy 2020, 22, 596. [Google Scholar] [CrossRef]
- Alway, A.; Zamri, N.E.; Kasihmuddin, M.S.M.; Mansor, A.; Sathasivam, S. Palm oil trend analysis via logic mining with discrete hopfield neural network. Pertanika J. Sci. Technol. 2020, 28, 967–981. [Google Scholar]
- Zhou, W.; Wang, P.; Heidari, A.A.; Zhao, X.; Chen, H. Spiral gaussian mutation sine cosine algorithm: Framework and comprehensive performance optimization. Expert Syst. Appl. 2022, 209, 118372. [Google Scholar] [CrossRef]
Categories | Samples | Features | Positive | Negative | |
---|---|---|---|---|---|
Bupa | 2 | 345 | 6 | 145 | 200 |
Hepatitis | 2 | 155 | 19 | 32 | 123 |
SPECT | 2 | 267 | 22 | 212 | 55 |
Datasets | Categories | Samples | Feartures | Positive | Negative |
---|---|---|---|---|---|
Caesarian section classification dataset | 2 | 80 | 4 | 34 | 46 |
Indian liver patient dataset (ILPD) | 2 | 583 | 10 | 415 | 167 |
Glass identification dataset | 7 | 214 | 9 | 69 (class 1) | 145 (other classes except positive) |
User knowledge modeling dataset | 4 | 403 | 5 | 102 (class 1) | 301 (other classes except positive) |
Breast tissue dataset | 6 | 106 | 9 | 20 (class 1) | 86 (other classes except positive) |
Car dataset | 4 | 1728 | 6 | 1209 (class 1) | 519 (other classes except positive) |
QCM sensor alcohol dataset | 5 | 125 | 15 | 24 (class 3) | 101 (other classes except positive) |
Basic Confusion Matrix | Predicted Class | ||
---|---|---|---|
Positive | Negative | ||
Actual Class | Positive | True Positive (TP) | False Negative (FN) |
Negative | False Positive (FP) | True Negative (TN) |
Algorithm | Metric | ACC | Precision | Sensitivity | Specificity | MCC |
---|---|---|---|---|---|---|
Hybrid SCA-FKNN | avg | 0.7799 | 0.7015 | 0.6412 | 0.8791 | 0.4728 |
std | 0.0143 | 0.0284 | 0.0299 | 0.0283 | 0.0303 | |
LSCA-FKNN | avg | 0.6232 | 0.6674 | 0.5687 | 0.8393 | 0.2465 |
std | 0.0199 | 0.0338 | 0.0175 | 0.0177 | 0.0367 | |
SCA-FKNN | avg | 0.6175 | 0.5494 | 0.4645 | 0.7968 | 0.2946 |
std | 0.0383 | 0.0439 | 0.0487 | 0.0178 | 0.0546 | |
PSO-FKNN | avg | 0.6686 | 0.6531 | 0.4851 | 0.8047 | 0.3105 |
std | 0.0266 | 0.0344 | 0.0379 | 0.0231 | 0.0472 | |
BA-FKNN | avg | 0.6056 | 0.5600 | 0.4693 | 0.7121 | 0.1920 |
std | 0.0292 | 0.0479 | 0.0423 | 0.0292 | 0.0694 | |
SSA-FKNN | avg | 0.6377 | 0.5862 | 0.5667 | 0.6923 | 0.2601 |
std | 0.0586 | 0.0069 | 0.1233 | 0.0327 | 0.0895 | |
SA-FKNN | avg | 0.6721 | 0.6444 | 0.4511 | 0.8087 | 0.3131 |
std | 0.0142 | 0.0340 | 0.0128 | 0.0415 | 0.0279 | |
CGSCA-FKNN | avg | 0.6600 | 0.6486 | 0.4711 | 0.7981 | 0.2939 |
std | 0.0193 | 0.0356 | 0.0195 | 0.0308 | 0.0382 |
Algorithm | Metric | ACC | Precision | Sensitivity | Specificity | MCC |
---|---|---|---|---|---|---|
Hybrid SCA-FKNN | avg | 0.9465 | 0.3638 | 0.4072 | 0.9392 | 0.4342 |
std | 0.0569 | 0.0937 | 0.0845 | 0.0312 | 0.0945 | |
LSCA-FKNN | avg | 0.8191 | 0.4566 | 0.3760 | 0.9192 | 0.3276 |
std | 0.0296 | 0.0874 | 0.0676 | 0.0303 | 0.0648 | |
SCA-FKNN | avg | 0.8051 | 0.4236 | 0.3512 | 0.9167 | 0.3009 |
std | 0.0323 | 0.1061 | 0.0745 | 0.0301 | 0.0875 | |
PSO-FKNN | avg | 0.7742 | 0.4641 | 0.3376 | 0.9217 | 0.3118 |
std | 0.0378 | 0.0969 | 0.0727 | 0.0230 | 0.0788 | |
BA-FKNN | avg | 0.8172 | 0.4333 | 0.4692 | 0.8305 | 0.3593 |
std | 0.0233 | 0.0702 | 0.0903 | 0.0267 | 0.0812 | |
SSA-FKNN | avg | 0.8750 | 0.2975 | 0.3333 | 0.9333 | 0.3846 |
std | 0.0432 | 0.0379 | 0.1925 | 0.0087 | 0.0098 | |
SA-FKNN | avg | 0.8076 | 0.4115 | 0.3280 | 0.9097 | 0.2771 |
std | 0.0242 | 0.0913 | 0.0751 | 0.0266 | 0.0797 | |
CGSCA-FKNN | avg | 0.8033 | 0.5533 | 0.3944 | 0.9067 | 0.3744 |
std | 0.0199 | 0.0740 | 0.0666 | 0.0266 | 0.0582 |
Algorithm | Metric | ACC | Precision | Sensitivity | Specificity | MCC |
---|---|---|---|---|---|---|
Hybrid SCA-FKNN | avg | 0.8936 | 0.8620 | 0.7157 | 0.5220 | 0.4436 |
std | 0.0195 | 0.0845 | 0.0610 | 0.0227 | 0.0605 | |
LSCA-FKNN | avg | 0.7593 | 0.8538 | 0.8730 | 0.4094 | 0.2588 |
std | 0.0191 | 0.0187 | 0.0357 | 0.0561 | 0.0656 | |
SCA-FKNN | avg | 0.7297 | 0.7953 | 0.8601 | 0.3427 | 0.1759 |
std | 0.0449 | 0.0283 | 0.0278 | 0.0707 | 0.0718 | |
PSO-FKNN | avg | 0.7615 | 0.8405 | 0.8541 | 0.3866 | 0.2079 |
std | 0.0351 | 0.0216 | 0.0308 | 0.0637 | 0.0975 | |
BA-FKNN | avg | 0.7585 | 0.7098 | 0.9270 | 0.1049 | 0.0259 |
std | 0.0287 | 0.0064 | 0.0164 | 0.0493 | 0.0702 | |
SSA-FKNN | avg | 0.6471 | 0.5455 | 0.8571 | 0.4443 | 0.3228 |
std | 0.0899 | 0.0951 | 0.0825 | 0.0673 | 0.0943 | |
SA-FKNN | avg | 0.7658 | 0.8195 | 0.8920 | 0.2891 | 0.1031 |
std | 0.0164 | 0.0176 | 0.0234 | 0.1013 | 0.0637 | |
CGSCA-FKNN | avg | 0.7546 | 0.8497 | 0.8330 | 0.4308 | 0.2034 |
std | 0.0229 | 0.0140 | 0.0238 | 0.0587 | 0.0709 |
Datasets | Metric | ACC | Precision | Sensitive | Specificity | MCC |
---|---|---|---|---|---|---|
Caesarian section classification dataset | Avg | 0.7026 | 0.7197 | 0.8336 | 0.7049 | 0.4694 |
Std | 0.0901 | 0.0500 | 0.0160 | 0.0927 | 0.0747 | |
Indian Liver Patient Dataset (ILPD) | Avg | 0.7953 | 0.7876 | 0.8255 | 0.3788 | 0.1621 |
Std | 0.0342 | 0.0379 | 0.0853 | 0.0541 | 0.0437 | |
Glass Identification Dataset | Avg | 0.7827 | 0.9016 | 0.9526 | 0.8347 | 0.4734 |
Std | 0.0355 | 0.0501 | 0.0376 | 0.0751 | 0.1037 | |
User Knowledge Modeling Dataset | Avg | 0.8606 | 0.9545 | 0.9709 | 0.9185 | 0.9042 |
Std | 0.0267 | 0.0408 | 0.0163 | 0.0864 | 0.0319 | |
Breast Tissue Dataset | Avg | 0.6554 | 0.9667 | 0.8883 | 0.9770 | 0.6969 |
Std | 0.0727 | 0.0577 | 0.0459 | 0.1443 | 0.1163 | |
Car Dataset | Avg | 0.8807 | 0.9188 | 0.9973 | 0.9823 | 0.8312 |
Std | 0.0916 | 0.0612 | 0.0716 | 0.0982 | 0.1616 | |
QCM sensor Alcohol Dataset | Avg | 0.9043 | 0.8501 | 0.8568 | 0.8477 | 0.8562 |
Std | 0.0939 | 0.0838 | 0.0719 | 0.0973 | 0.1008 |
Algorithm | Metric | ACC | Precision | Sensitivity | Specificity | MCC |
---|---|---|---|---|---|---|
Hybrid SCA-FKNN | avg | 0.7026 | 0.7197 | 0.8336 | 0.7049 | 0.4694 |
std | 0.0901 | 0.0500 | 0.0160 | 0.0927 | 0.0747 | |
LSCA-FKNN | avg | 0.6677 | 0.8148 | 0.5741 | 0.7095 | 0.3923 |
std | 0.0955 | 0.1197 | 0.0986 | 0.0965 | 0.1295 | |
SCA-FKNN | avg | 0.6667 | 0.6766 | 0.6349 | 0.7333 | 0.3626 |
std | 0.0722 | 0.2384 | 0.0755 | 0.0882 | 0.0414 | |
PSO-FKNN | avg | 0.6675 | 0.8194 | 0.7505 | 0.7250 | 0.4045 |
std | 0.0701 | 0.1138 | 0.1220 | 0.0992 | 0.0939 | |
BA-FKNN | avg | 0.5625 | 0.5361 | 0.7424 | 0.2500 | 0.2655 |
std | 0.0625 | 0.0804 | 0.0957 | 0.0443 | 0.0995 | |
SSA-FKNN | avg | 0.5775 | 0.6528 | 0.5370 | 0.5952 | 0.2381 |
std | 0.0523 | 0.0241 | 0.0656 | 0.0591 | 0.0817 |
Algorithm | Metric | ACC | Precision | Sensitivity | Specificity | MCC |
---|---|---|---|---|---|---|
Hybrid SCA-FKNN | avg | 0.7953 | 0.7876 | 0.8255 | 0.3788 | 0.1621 |
std | 0.0342 | 0.0379 | 0.0853 | 0.0541 | 0.0437 | |
LSCA-FKNN | avg | 0.6912 | 0.6961 | 0.9856 | 0.1078 | 0.0712 |
std | 0.0191 | 0.0123 | 0.0220 | 0.0309 | 0.0257 | |
SCA-FKNN | avg | 0.6455 | 0.7440 | 0.8882 | 0.2058 | 0.1038 |
std | 0.0222 | 0.0732 | 0.0964 | 0.0821 | 0.0674 | |
PSO-FKNN | avg | 0.7173 | 0.7187 | 0.9967 | 0.0963 | 0.0953 |
std | 0.0139 | 0.0162 | 0.0058 | 0.0107 | 0.0641 | |
BA-FKNN | avg | 0.7108 | 0.7209 | 0.9534 | 0.0865 | 0.0532 |
std | 0.0085 | 0.0076 | 0.0034 | 0.0012 | 0.0125 | |
SSA-FKNN | avg | 0.7092 | 0.7215 | 0.9695 | 0.0502 | 0.0644 |
std | 0.0028 | 0.0140 | 0.0277 | 0.0457 | 0.0112 |
Algorithm | Metric | ACC | Precision | Sensitivity | Specificity | MCC |
---|---|---|---|---|---|---|
Hybrid SCA-FKNN | avg | 0.7827 | 0.9016 | 0.9526 | 0.8347 | 0.4734 |
std | 0.0355 | 0.0501 | 0.0376 | 0.0751 | 0.1037 | |
LSCA-FKNN | avg | 0.6589 | 0.5961 | 0.6759 | 0.7618 | 0.4242 |
std | 0.0355 | 0.2470 | 0.1530 | 0.0546 | 0.1972 | |
SCA-FKNN | avg | 0.6654 | 0.6078 | 0.8614 | 0.7028 | 0.5339 |
std | 0.0355 | 0.0453 | 0.0558 | 0.0337 | 0.0394 | |
PSO-FKNN | avg | 0.6047 | 0.6429 | 0.6923 | 0.7727 | 0.4587 |
std | 0.0968 | 0.0415 | 0.0994 | 0.0646 | 0.0950 | |
BA-FKNN | avg | 0.5349 | 0.3333 | 0.5000 | 0.6429 | 0.3187 |
std | 0.1005 | 0.0907 | 0.0874 | 0.0707 | 0.0587 | |
SSA-FKNN | avg | 0.7209 | 0.7778 | 0.9091 | 0.6875 | 0.6209 |
std | 0.0880 | 0.0128 | 0.1905 | 0.1168 | 0.2040 |
Algorithm | Metric | ACC | Precision | Sensitivity | Specificity | MCC |
---|---|---|---|---|---|---|
Hybrid SCA-FKNN | avg | 0.8606 | 0.9545 | 0.9709 | 0.9185 | 0.9042 |
std | 0.0267 | 0.0408 | 0.0163 | 0.0864 | 0.0319 | |
LSCA-FKNN | avg | 0.7901 | 0.9286 | 0.9286 | 0.9808 | 0.9093 |
std | 0.0317 | 0.0299 | 0.0469 | 0.0127 | 0.0388 | |
SCA-FKNN | avg | 0.7977 | 0.9107 | 0.9639 | 0.9678 | 0.9143 |
std | 0.0744 | 0.0233 | 0.0313 | 0.0138 | 0.0400 | |
PSO-FKNN | avg | 0.7713 | 0.8860 | 0.9434 | 0.9444 | 0.8876 |
std | 0.0681 | 0.0218 | 0.0246 | 0.0059 | 0.0395 | |
BA-FKNN | avg | 0.5179 | 0.6324 | 0.5404 | 0.8189 | 0.3828 |
std | 0.0890 | 0.1101 | 0.3625 | 0.1877 | 0.2242 | |
SSA-FKNN | avg | 0.8025 | 0.9437 | 0.7593 | 0.9541 | 0.7018 |
std | 0.0377 | 0.0150 | 0.0590 | 0.0153 | 0.0629 |
Algorithm | Metric | ACC | Precision | Sensitivty | Specificity | MCC |
---|---|---|---|---|---|---|
Hybrid SCA-FKNN | avg | 0.6554 | 0.9667 | 0.8883 | 0.9770 | 0.6969 |
std | 0.0727 | 0.0577 | 0.0459 | 0.1443 | 0.1163 | |
LSCA-FKNN | avg | 0.5397 | 0.8667 | 0.6389 | 0.9333 | 0.6154 |
std | 0.0727 | 0.2309 | 0.1273 | 0.1155 | 0.2682 | |
SCA-FKNN | avg | 0.5373 | 0.7500 | 0.8167 | 0.9024 | 0.6471 |
std | 0.0550 | 0.0012 | 0.1243 | 0.0117 | 0.0937 | |
PSO-FKNN | avg | 0.5238 | 0.6583 | 0.8333 | 0.7500 | 0.5677 |
std | 0.0991 | 0.0366 | 0.0787 | 0.0605 | 0.0879 | |
BA-FKNN | avg | 0.4928 | 0.5843 | 0.6875 | 0.6742 | 0.4731 |
std | 0.0727 | 0.0473 | 0.0887 | 0.0751 | 0.0949 | |
SSA-FKNN | avg | 0.6667 | 0.9487 | 0.8196 | 0.6667 | 0.5657 |
std | 0.0825 | 0.0888 | 0.0239 | 0.0774 | 0.0865 |
Algorithm | Metric | ACC | Precision | Sensitivity | Specificity | MCC |
---|---|---|---|---|---|---|
Hybrid SCA-FKNN | avg | 0.8807 | 0.9188 | 0.9973 | 0.9823 | 0.8312 |
std | 0.0916 | 0.0612 | 0.0716 | 0.0982 | 0.1616 | |
LSCA-FKNN | avg | 0.8691 | 0.9450 | 0.9467 | 0.8388 | 0.7922 |
std | 0.0161 | 0.0372 | 0.0289 | 0.1106 | 0.0454 | |
SCA-FKNN | avg | 0.8168 | 0.8789 | 0.9559 | 0.9428 | 0.7818 |
std | 0.0134 | 0.0095 | 0.0057 | 0.0271 | 0.0110 | |
PSO-FKNN | avg | 0.7645 | 0.7718 | 0.9977 | 0.3179 | 0.4601 |
std | 0.0159 | 0.0964 | 0.0434 | 0.0530 | 0.0064 | |
BA-FKNN | avg | 0.7107 | 0.7342 | 0.9468 | 0.6591 | 0.6596 |
std | 0.0859 | 0.1090 | 0.0350 | 0.1100 | 0.1226 | |
SSA-FKNN | avg | 0.8618 | 0.9461 | 0.8816 | 0.8307 | 0.6653 |
std | 0.0854 | 0.0939 | 0.0269 | 0.0819 | 0.0945 |
Algorithm | Metric | ACC | Precision | Sensitivity | Specificity | MCC |
---|---|---|---|---|---|---|
Hybrid SCA-FKNN | avg | 0.9043 | 0.8501 | 0.8568 | 0.8477 | 0.8562 |
std | 0.0939 | 0.0838 | 0.0719 | 0.0973 | 0.1008 | |
LSCA-FKNN | avg | 0.7600 | 0.7917 | 0.8327 | 0.8189 | 0.7269 |
std | 0.0367 | 0.0908 | 0.0823 | 0.0925 | 0.1415 | |
SCA-FKNN | avg | 0.7702 | 0.7333 | 0.7333 | 0.8841 | 0.7479 |
std | 0.0693 | 0.0887 | 0.1082 | 0.0275 | 0.1270 | |
PSO-FKNN | avg | 0.4400 | 0.5095 | 0.6656 | 0.6794 | 0.2208 |
std | 0.0400 | 0.0744 | 0.0672 | 0.0531 | 0.0580 | |
BA-FKNN | avg | 0.3067 | 0.6567 | 0.2611 | 0.7804 | 0.3568 |
std | 0.0231 | 0.0333 | 0.0674 | 0.0756 | 0.0632 | |
SSA-FKNN | avg | 0.8133 | 0.6640 | 0.7714 | 0.8682 | 0.6117 |
std | 0.1007 | 0.0856 | 0.0960 | 0.0304 | 0.1126 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Kasihmuddin, M.S.M.; Mansor, M.A.; Chen, J.; Guo, Y. Intelligent Multi-Strategy Hybrid Fuzzy K-Nearest Neighbor Using Improved Hybrid Sine Cosine Algorithm. Mathematics 2022, 10, 3368. https://doi.org/10.3390/math10183368
Zheng C, Kasihmuddin MSM, Mansor MA, Chen J, Guo Y. Intelligent Multi-Strategy Hybrid Fuzzy K-Nearest Neighbor Using Improved Hybrid Sine Cosine Algorithm. Mathematics. 2022; 10(18):3368. https://doi.org/10.3390/math10183368
Chicago/Turabian StyleZheng, Chengfeng, Mohd Shareduwan Mohd Kasihmuddin, Mohd. Asyraf Mansor, Ju Chen, and Yueling Guo. 2022. "Intelligent Multi-Strategy Hybrid Fuzzy K-Nearest Neighbor Using Improved Hybrid Sine Cosine Algorithm" Mathematics 10, no. 18: 3368. https://doi.org/10.3390/math10183368
APA StyleZheng, C., Kasihmuddin, M. S. M., Mansor, M. A., Chen, J., & Guo, Y. (2022). Intelligent Multi-Strategy Hybrid Fuzzy K-Nearest Neighbor Using Improved Hybrid Sine Cosine Algorithm. Mathematics, 10(18), 3368. https://doi.org/10.3390/math10183368