The Optimal Balance between Oncolytic Viruses and Natural Killer Cells: A Mathematical Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model
2.2. Equilibrium Points
- (1)
- If , then from the second equation in Equation (6), , which implies since . It leads to and z . Therefore, we have an equilibrium point .
- (2)
- If and from the fourth equation in Equation (6), we obtain from the second equation and from the third equation in Equation (6), which leads to . If , then we obtain and from the first equation in Equation (6). Thus, we have an equilibrium point .
- (3)
- If and , then, from the second and third equation in Equation (6), . Since , we have . From the first and second equation in Equation (6), . From the second and third equations in Equation (6), , which is . Thus, we have an equilibrium point , where ,and .
- (4)
- If and , from the fourth equation in Equation (6), . From the second and third equations in Equation (6), we obtain . It leads to . From the first equation in Equation (6), we obtain . Let us define
2.3. Stability of Equilibrium Points
2.4. Numerical Simulation
3. Results
3.1. Existence and Stability of the Equilibrium Points
3.2. The Effect of NK Cell Activation on Population Dynamics
3.3. Activation of NK Cells Reduces the Efficacy of Oncolytic Virotherapy, Requiring a Higher Bursting Rate of Virus to Generate Oscillations in the Cancer Cell Population
3.4. The Stability of Equilibrium Points Depends on the Existence of NK Cells
3.5. Two Parameters (b and r2) Bifurcation Diagram
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parato, K.A.; Breitbach, C.J.; Le Boeuf, F.; Wang, J.; Storbeck, C.; Ilkow, C.; Diallo, J.S.; Falls, T.; Burns, J.; Garcia, V.; et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther. 2012, 20, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, M.; Huang, Y. Oncolytic therapy and gene therapy for cancer: Recent advances in antitumor effects of Newcastle disease virus. Discov. Med. 2020, 30, 39–48. [Google Scholar] [PubMed]
- Kazemi Shariat Panahi, H.; Dehhaghi, M.; Lam, S.S.; Peng, W.; Aghbashlo, M.; Tabatabaei, M.; Guillemin, G.J. Oncolytic viruses as a promising therapeutic strategy against the detrimental health impacts of air pollution: The case of glioblastoma multiforme. Semin. Cancer Biol. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Mondal, M.; Guo, J.; He, P.; Zhou, D. Recent advances of oncolytic virus in cancer therapy. Hum. Vaccines Immunother. 2020, 16, 2389–2402. [Google Scholar] [CrossRef]
- Thorne, S.H.; Hwang, T.H.; O’Gorman, W.E.; Bartlett, D.L.; Sei, S.; Kanji, F.; Brown, C.; Werier, J.; Cho, J.H.; Lee, D.E.; et al. Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus, JX-963. J. Clin. Investig. 2007, 117, 3350–3358. [Google Scholar] [CrossRef]
- Eissa, I.R.; Bustos-Villalobos, I.; Ichinose, T.; Matsumura, S.; Naoe, Y.; Miyajima, N.; Morimoto, D.; Mukoyama, N.; Zhiwen, W.; Tanaka, M.; et al. The Current Status and Future Prospects of Oncolytic Viruses in Clinical Trials against Melanoma, Glioma, Pancreatic, and Breast Cancers. Cancers 2018, 10, 356. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Pala, L.; Conforti, F.; Cocorocchio, E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers 2021, 13, 1383. [Google Scholar] [CrossRef]
- Gesundheit, B.; Ben-David, E.; Posen, Y.; Ellis, R.; Wollmann, G.; Schneider, E.M.; Aigner, K.; Brauns, L.; Nesselhut, T.; Ackva, I.; et al. Effective Treatment of Glioblastoma Multiforme With Oncolytic Virotherapy: A Case-Series. Front. Oncol. 2020, 10, 702. [Google Scholar] [CrossRef]
- Desjardins, A.; Gromeier, M.; Herndon, J.E., 2nd; Beaubier, N.; Bolognesi, D.P.; Friedman, A.H.; Friedman, H.S.; McSherry, F.; Muscat, A.M.; Nair, S.; et al. Recurrent Glioblastoma Treated with Recombinant Poliovirus. N. Engl. J. Med. 2018, 379, 150–161. [Google Scholar] [CrossRef]
- Filley, A.C.; Dey, M. Immune System, Friend or Foe of Oncolytic Virotherapy? Front. Oncol. 2017, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Al-Tuwairqi, S.M.; Al-Johani, N.O.; Simbawa, E.A. Modeling dynamics of cancer virotherapy with immune response. Adv. Differ. Equ. 2020, 2020, 438. [Google Scholar] [CrossRef]
- Shi, T.; Song, X.; Wang, Y.; Liu, F.; Wei, J. Combining Oncolytic Viruses With Cancer Immunotherapy: Establishing a New Generation of Cancer Treatment. Front. Immunol. 2020, 11, 683. [Google Scholar] [CrossRef]
- Leung, E.Y.L.; Ennis, D.P.; Kennedy, P.R.; Hansell, C.; Dowson, S.; Farquharson, M.; Spiliopoulou, P.; Nautiyal, J.; McNamara, S.; Carlin, L.M.; et al. NK Cells Augment Oncolytic Adenovirus Cytotoxicity in Ovarian Cancer. Mol. Ther. Oncolytics 2020, 16, 289–301. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.; Li, H.; Du, X.; Liu, M.; Huang, Q.; Wang, Y.; Wang, S. The Efficacy of Oncolytic Adenovirus Is Mediated by T-cell Responses against Virus and Tumor in Syrian Hamster Model. Clin. Cancer Res. 2017, 23, 239–249. [Google Scholar] [CrossRef]
- Lemos de Matos, A.; Franco, L.S.; McFadden, G. Oncolytic Viruses and the Immune System: The Dynamic Duo. Mol. Ther. Methods Clin. Dev. 2020, 17, 349–358. [Google Scholar] [CrossRef]
- Leung, E.Y.L.; McNeish, I.A. Strategies to Optimise Oncolytic Viral Therapies: The Role of Natural Killer Cells. Viruses 2021, 13, 1450. [Google Scholar] [CrossRef]
- Alvarez-Breckenridge, C.A.; Yu, J.; Price, R.; Wojton, J.; Pradarelli, J.; Mao, H.; Wei, M.; Wang, Y.; He, S.; Hardcastle, J.; et al. NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat. Med. 2012, 18, 1827–1834. [Google Scholar] [CrossRef]
- Han, J.; Alvarez-Breckenridge, C.A.; Wang, Q.E.; Yu, J. TGF-beta signaling and its targeting for glioma treatment. Am. J. Cancer Res. 2015, 5, 945–955. [Google Scholar]
- Altomonte, J.; Wu, L.; Meseck, M.; Chen, L.; Ebert, O.; Garcia-Sastre, A.; Fallon, J.; Mandeli, J.; Woo, S.L. Enhanced oncolytic potency of vesicular stomatitis virus through vector-mediated inhibition of NK and NKT cells. Cancer Gene Ther. 2009, 16, 266–278. [Google Scholar] [CrossRef]
- Kim, Y.; Yoo, J.Y.; Lee, T.J.; Liu, J.; Yu, J.; Caligiuri, M.A.; Kaur, B.; Friedman, A. Complex role of NK cells in regulation of oncolytic virus-bortezomib therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 4927–4932. [Google Scholar] [CrossRef]
- Mahasa, K.J.; de Pillis, L.; Ouifki, R.; Eladdadi, A.; Maini, P.; Yoon, A.R.; Yun, C.O. Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Sci. Rep. 2020, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Macnamara, C.; Eftimie, R. Memory versus effector immune responses in oncolytic virotherapies. J. Theor. Biol. 2015, 377, 1–9. [Google Scholar] [CrossRef]
- Phan, T.A.; Tian, J.P. The Role of the Innate Immune System in Oncolytic Virotherapy. Comput. Math. Methods Med. 2017, 2017, 6587258. [Google Scholar] [CrossRef]
- Ikawati, D.S.E.; Kusumawinahyu, W.M.; Trisilowati. A Dynamical Analysis on a Tumour Virotherapy Model with Standard Incident Rate. J. Trop. Life Sci. 2016, 7, 16–22. [Google Scholar] [CrossRef]
- Wodarz, D. Gene therapy for killing p53-negative cancer cells: Use of replicating versus nonreplicating agents. Hum. Gene Ther. 2003, 14, 153–159. [Google Scholar] [CrossRef]
- Senekal, N.S.; Mahasa, K.J.; Eladdadi, A.; de Pillis, L.; Ouifki, R. Natural Killer Cells Recruitment in Oncolytic Virotherapy: A Mathematical Model. Bull. Math. Biol. 2021, 83, 75. [Google Scholar] [CrossRef]
- Friedman, A.; Tian, J.P.; Fulci, G.; Chiocca, E.A.; Wang, J. Glioma virotherapy: Effects of innate immune suppression and increased viral replication capacity. Cancer Res. 2006, 66, 2314–2319. [Google Scholar] [CrossRef]
- Kambara, H.; Okano, H.; Chiocca, E.A.; Saeki, Y. An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res. 2005, 65, 2832–2839. [Google Scholar] [CrossRef]
- Tian, J.P. The replicability of oncolytic virus: Defining conditions in tumor virotherapy. Math. Biosci. Eng. 2011, 8, 841–860. [Google Scholar] [CrossRef]
- Fuchs, B.A.; Levin, V.I. Functions of a Complex Variable and Some of Their Applications; Pergamon Press: London, UK, 1961; Volume II. [Google Scholar]
- Hofman, L.; Lawler, S.E.; Lamfers, M.L.M. The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses 2021, 13, 1570. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Komarova, S.; Kawakami, Y.; Stoff-Khalili, M.A.; Curiel, D.T.; Pereboeva, L. Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses. Mol. Cancer Ther. 2006, 5, 755–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Description | Value | Units | References |
---|---|---|---|---|
Cancer growth rate | [27] | |||
Infection rate of the virus | virus | [27] | ||
Killing rate of cancer cells by NK cells | NK cell | [20] | ||
Killing rate of infected cancer cells by NK cells | NK cell | [20] | ||
Death rate of infected cancer cells | [27] | |||
b | Burst rate of the virus | 50 | Viruses/cell | [27] |
Clearance rate of the virus | 0.0118 | [20] | ||
Stimulation (or activation) rate of the NK cells by infected cancer cells | infected cancer cell | [20] | ||
Clearance rate of NK cells | [20] |
Interval of b | Stability of | Stability of | Stability of | |
---|---|---|---|---|
0.43 | Stable | Unstable | Unstable | |
Unstable | Stable | Unstable | ||
Unstable | Unstable | Stable | ||
Unstable | Stable | Unstable | ||
Unstable | Limit cycle | Unstable | ||
0.5 | Stable | Unstable | Unstable | |
Unstable | Stable | Unstable | ||
Unstable | Unstable | Stable | ||
Unstable | Stable | Unstable | ||
Unstable | Limit cycle | Unstable | ||
0.6 | Stable | Unstable | Unstable | |
Unstable | Stable | Unstable | ||
Unstable | Unstable | Stable | ||
Unstable | Stable | Unstable | ||
Unstable | Limit cycle | Unstable | ||
0.7 | Stable | Unstable | Unstable | |
Unstable | Stable | Unstable | ||
Unstable | Unstable | Stable | ||
Unstable | Stable | Unstable | ||
Unstable | Limit cycle | Unstable | ||
0.8 | Stable | Unstable | Unstable | |
Unstable | Stable | Unstable | ||
Unstable | Unstable | Stable | ||
Unstable | Stable | Unstable | ||
Unstable | Limit cycle | Unstable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Shin, D.-H.; Sung, C.K. The Optimal Balance between Oncolytic Viruses and Natural Killer Cells: A Mathematical Approach. Mathematics 2022, 10, 3370. https://doi.org/10.3390/math10183370
Kim D, Shin D-H, Sung CK. The Optimal Balance between Oncolytic Viruses and Natural Killer Cells: A Mathematical Approach. Mathematics. 2022; 10(18):3370. https://doi.org/10.3390/math10183370
Chicago/Turabian StyleKim, Dongwook, Dong-Hoon Shin, and Chang K. Sung. 2022. "The Optimal Balance between Oncolytic Viruses and Natural Killer Cells: A Mathematical Approach" Mathematics 10, no. 18: 3370. https://doi.org/10.3390/math10183370
APA StyleKim, D., Shin, D. -H., & Sung, C. K. (2022). The Optimal Balance between Oncolytic Viruses and Natural Killer Cells: A Mathematical Approach. Mathematics, 10(18), 3370. https://doi.org/10.3390/math10183370