Methods for Mathematical Analysis of Simulated and Real Fractal Processes with Application in Cardiology
Abstract
:1. Introduction
- Self-similarity—the fractal order is self-similarity if it can decompose into smaller parts, each of which is similar to the main one. The degree of self-similarity can be determined by the Hurst exponent.
- Fractal dimension (D)—this is a non-integer value located between the Euclidean and the topological dimensions [12].
1.1. Related Work
1.2. Purpose and Objective of the Article
- Simulate an exact FGN-based self-similar (fractal) process by applying Hosking’s algorithm.
- Comparative analysis of the following 5 methods: Rescaled Range analysis (R/S), Variance-time plot, Wavelet-based method, DFA, MFDFA to determine the value of the Hurst exponent with respect to the accuracy parameter.
- Study of cardiac signals of two groups of patients by applying the most accurate methods of analysis.
2. Materials and Methods
2.1. Hosking’s Algorithm for Simulation Modeling of Fractal Processes
- rk are autocorrelation coefficients;
- σ is the variance;
- H is the Hurst exponent.
- and are the variances of the first two elements of the generated process;
- is the correlation coefficient for the first element X1 of the fractal process;
- r0 and r1 are the autocorrelation coefficients of the first two elements of the generated process.
2.2. Methods for Determining the Hurst Exponent
2.2.1. Variance-Time Plot
- is the slope of the regression line;
- is the determined value of the Hurst exponent.
2.2.2. Rescaled Range Statistics
- The Range R(n), which defines the differences between the min and max value of the sum of the deviation Wj from the mean value of the data for an area of n points, is given by the expression:
- Standard deviation S(n):
- is the point where the regression line intersects the ordinate;
- is the slope of the regression line.
2.2.3. Wavelet-Based Method
- The Fourier transform is used to transform stationary processes from the frequency domain to the time domain, and the process is transformed as a sum of sinusoids with different frequencies. It cannot represent the information in the time domain.
- The wavelet transform can represent the process in the time and frequency domains simultaneously. It can transform both stationary and non-stationary processes without loss of information.
- A wavelet function (ψi,j) applied to the high-pass filter that is run two or more times and computes wavelet coefficients;
- A scalable function (φi,j) relating the low-pass filter that creates a smoother version of the original data. The received data after the low-pass filter become input data for the next step of the algorithm.
- is a scalable function;
- is the mother wavelet and originates from
2.2.4. Detrended Fluctuation Analysis
- Instead of using a decreasing correlation function, an increasing function is introduced, which provides a more reliable estimation of processes with long-term correlations, especially in the presence of noise and sample size limitations;
- An integral part of the calculation algorithm is the approximation and subsequent elimination of the low-frequency trend, which makes it possible to apply the method to both stationary and non-stationary processes without their prior filtering.
2.2.5. Multifractal Detrended Fluctuation Analysis
2.3. Data
3. Results and Discussion
3.1. Analysis of Simulated Data
3.1.1. Determining the Minimum Length of a Simulated Fractal Process
- Variance-time plot and R/S are not very accurate methods, as their RSE are in a wide range from 0.2% to 11.3%, and these methods can only be used to test whether the studied process is fractal or not, and if it is fractal, approximately to be determined the value of the Hurst exponent;
- The determined values of the Hurst exponent with the methods: Wavelet-based, DFA and MFDFA reach the input values of this parameter with a RSE of less than 1% for process lengths greater than 214 (16,384) points. These three methods have a high degree of accuracy and can be used in the analysis of simulated and real processes;
3.1.2. Evaluation of the Wavelet-Based Methods
- The RSE in determining the Hurst exponent using the Haar and Daubechies algorithms is the smallest when the scale is (i,j) = (2,10) and (i,j) = (3,10). In the article, when applying this method, the scale (i,j) = (2,10) is used;
- The RSE in determining the Hurst exponent is smaller when using the Daubechies algorithm compared to the Haar algorithm;
- The RSE of the Hurst exponent is the smallest when using the Daubechies algorithm with 10 coefficients and it is less than 0.5%.
3.1.3. Evaluation of the DFA Method
3.1.4. Evaluation of the MFDFA Method
3.2. Analysis of Real Cardiological Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falconer, K.J. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Captur, G.; Karperien, A.L.; Hughes, A.D.; Francis, D.P.; Moon, J.C. The fractal heart—Embracing mathematics in the cardiology clinic. Nat. Rev. Cardiol. 2017, 14, 56–64. [Google Scholar] [CrossRef]
- Kunz, V.C.; Borges, E.N.; Coelho, R.C.; Gubolino, L.A.; Martins, L.E.B.; Silva, E. Linear and nonlinear analysis of heart rate variability in healthy subjects and after acute myocardial infarction in patients. Braz. J. Med. Biol. Res. 2012, 45, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Andronache, I.C.; Peptenatu, D.; Ciobotaru, A.-M.; Gruia, A.K.; Nina Margareta Gropoşilă, N.M. Using Fractal Analysis in Modeling Trends in the National Economy. Procedia Environ. Sci. 2016, 32, 344–351. [Google Scholar] [CrossRef]
- Wang, L.; He, K.; Zou, Y.; Feng, Z. Multiscale Fractal Analysis of Electricity Markets. In Proceedings of the Seventh International Joint Conference on Computational Sciences and Optimization, Beijing, China, 4–6 July 2014; pp. 378–382. [Google Scholar] [CrossRef]
- Ouadfeul, S.; Aliouane, L.; Boudella, A. Fractal and Chaos in Exploration Geophysics. In Fractal Analysis and Chaos in Geosciences; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef]
- Mariani, M.C.; Kubin, W.; Asante, P.K.; Tweneboah, O.K.; Beccar-Varela, M.P.; Jaroszewicz, S.; Gonzalez-Huizar, H. Self-Similar Models: Relationship between the Diffusion Entropy Analysis, Detrended Fluctuation Analysis and Lévy Models. Mathematics 2020, 8, 1046. [Google Scholar] [CrossRef]
- Mariani, M.C.; Asante, P.K.; Bhuiyan, M.A.M.; Beccar-Varela, M.P.; Jaroszewicz, S.; Tweneboah, O.K. Long-Range Correlations and Characterization of Financial and Volcanic Time Series. Mathematics 2020, 8, 441. [Google Scholar] [CrossRef]
- Suszyński, M.; Peta, K.; Černohlávek, V.; Svoboda, M. Mechanical Assembly Sequence Determination Using Artificial Neural Networks Based on Selected DFA Rating Factors. Symmetry 2022, 14, 1013. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Fractal Geometry of Nature; W H Freeman & Co.: New York, NY, USA, 1982. [Google Scholar]
- Mandelbrot, B. Fractals and Scaling in Finance; Springer: New York, NY, USA, 1997. [Google Scholar]
- Kale, M.; Butar, F.B. Fractal Analysis of Time Series and Distribution Properties of Hurst Exponent. J. Math. Sci. Math. Educ. 2007, 5, 8–19. [Google Scholar]
- Sheluhin, O.I.; Smolskiy, S.M.; Osin, A.V. Self-Similar Processes in Telecommunications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Kantelhardt, J.W. Fractal and Multifractal Time Series. In Mathematics of Complexity and Dynamical Systems; Meyers, R., Ed.; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Nigmatullin, R.; Dorokhin, S.; Ivchenko, A. Generalized Hurst Hypothesis: Description of Time-Series in Communication Systems. Mathematics 2021, 9, 381. [Google Scholar] [CrossRef]
- Raimundo, M.S.; Okamoto, J. Application of Hurst Exponent (H) and the R/S Analysis in the Classification of FOREX Securities. Int. J. Modeling Optim. 2018, 8, 116–124. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y. Rescaled range (R/S) analysis on seismic activity parameters. Acta Seimol. Sin. 2008, 14, 148–155. [Google Scholar] [CrossRef]
- Schandrasekaran, S.; Poomalai, S.; Saminathan, B.; Suthanthiravel, S.; Sundaram, K.; Hakkim, F.F.A. An investigation on the relationship between the Hurst exponent and the predictability of a rainfall time series. Meteorol. Appl. 2019, 26, 511–519. [Google Scholar] [CrossRef]
- Quanmin, B.; Jun, B.; Zengwei, Y.; Lei, H. R/S method for evaluation of pollutant time series in environmental quality assessment. Water Sci. Eng. 2008, 1, 82–88. [Google Scholar] [CrossRef]
- Li, Y.; Teng, Y. Estimation of the Hurst Parameter in Spot Volatility. Mathematics 2022, 10, 1619. [Google Scholar] [CrossRef]
- Kaminskiy, R.; Shakhovska, N.; Kajanová, J.; Kryvenchuk, Y. Method of Distinguishing Styles by Fractal and Statistical Indicators of the Text as a Sequence of the Number of Letters in Its Words. Mathematics 2021, 9, 2410. [Google Scholar] [CrossRef]
- Ghosh, B.; Bouri, E. Is Bitcoin’s Carbon Footprint Persistent? Multifractal Evidence and Policy Implications. Entropy 2022, 4, 647. [Google Scholar] [CrossRef]
- Cornforth, D.; Jelinek, H.F.; Tarvainen, M. A Comparison of Nonlinear Measures for the Detection of Cardiac Autonomic Neuropathy from Heart Rate Variability. Entropy 2015, 17, 1425–1440. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, X.; Chen, Y. Extraction of Coal and Gangue Geometric Features with Multifractal Detrending Fluctuation Analysis. Appl. Sci. 2018, 8, 463. [Google Scholar] [CrossRef] [Green Version]
- Stosic, D.; Stosic, D.; Vodenska, I.; Stanley, H.E.; Stosic, T. A New Look at Calendar Anomalies: Multifractality and Day-of-the-Week Effect. Entropy 2022, 24, 562. [Google Scholar] [CrossRef]
- Miloş, L.R.; Haţiegan, C.; Miloş, M.C.; Barna, F.M.; Boțoc, C. Multifractal Detrended Fluctuation Analysis (MF-DFA) of Stock Market Indexes. Empirical Evidence from Seven Central and Eastern European Markets. Sustainability 2020, 12, 535. [Google Scholar] [CrossRef]
- Abundo, M.; Pirozzi, E. On the Integral of the Fractional Brownian Motion and Some Pseudo-Fractional Gaussian Processes. Mathematics 2019, 7, 991. [Google Scholar] [CrossRef]
- Yan, Z.; Guirao, J.L.G.; Saeed, T.; Chen, H.; Liu, X. Different Stochastic Resonances Induced by Multiplicative Polynomial Trichotomous Noise in a Fractional Order Oscillator with Time Delay and Fractional Gaussian Noise. Fractal Fract. 2022, 6, 191. [Google Scholar] [CrossRef]
- Kermarrec, G. On Estimating the Hurst Parameter from Least-Squares Residuals. Case Study: Correlated Terrestrial Laser Scanner Range Noise. Mathematics 2020, 8, 674. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Sibatov, R.T. Fractal Stochastic Processes on Thin Cantor-Like Sets. Mathematics 2021, 9, 613. [Google Scholar] [CrossRef]
- Acharya, U.R.; Suri, J.S.; Spaan, J.A.E.; Krishnan, S.M. Advances in Cardiac Signal Processing; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ernst, G. Heart Rate Variability; Springer: London, UK, 2014. [Google Scholar]
- Malik, M. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Heart rate variability—Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Sen, J.; McGill, D. Fractal analysis of heart rate variability as a predictor of mortality: A systematic review and me-ta-analysis. Interdiscip. J. Nonlinear Sci. 2018, 28, 072101. [Google Scholar] [CrossRef]
- Brockwell, P.; Davis, R. Time Series: Theory and Methods, 2nd ed.; Springer: New York, NY, USA, 1991. [Google Scholar]
- Taqqu, M.; Willinger, W.; Sherman, R. Proof of a Fundamental Result in Self-Similar Traffic Modeling. Comput. Commun. Rev. 1997, 27, 5–23. [Google Scholar] [CrossRef]
- Hosking, J.R. Modeling persistence in hydrological time series using fractional differencing. Water Resour. Res. 1984, 20, 1898–1908. [Google Scholar] [CrossRef]
- Fei, Y.; Shao, X.; Wang, G.; Zhou, L.; Xia, X.; He, Y. Effectiveness of Electricity Derivatives Market Based on Hurst Exponent. In Proceedings of the 4th International Conference on Advances in Energy and Environment Research (ICAEER 2019), Shanghai, China, 16–18 August 2019. 4p. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civil Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Hurst, H.E.; Black, R.P.; Simaika, Y.M. Long-Term Storage: An Expiremental Study; Constable: London, UK, 1965. [Google Scholar]
- Cohen, A.; Atoui, M.A.A. On Wavelet-based Statistical Process Monitoring. Trans. Inst. Meas. Control 2022, 44, 525–538. [Google Scholar] [CrossRef]
- Muzy, J.F.; Bacry, E.; Arneodo, A. The Multifractal Formalism Revisited with Wavelets. Int. J. Bifurc. Chaos 1994, 4, 245–302. [Google Scholar] [CrossRef]
- Mahmoud, M.; Dessouky, M.; Deyab, S.; Elfouly, F. Comparison between Haar and Daubechies Wavelet Transformions on FPGA Technology. World Academy of Science, Engineering and Technology, Open Science Index 2. Int. J. Aerosp. Mech. Eng. 2007, 1, 141–145. [Google Scholar]
- Sharif, I.; Khare, S. Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 8, 937–941. [Google Scholar]
- Kusi, B. Performance Analysis between Haar and Daubechies Discrete Wavelet Transform in Digital Watermarking. Int. J. Adv. Eng. 2019, 2, 17–26. [Google Scholar]
- Mahmoud, W.A.; Hadi, A.S.; Jawad, T.M. Development of a 2-D Wavelet Transform based on Kronecker Product. J. Al-Nahrain Univ. 2012, 15, 208–213. [Google Scholar] [CrossRef]
- Maraun, D.; Rust, H.W.; Timmer, J. Tempting long-memory—On the interpretation of DFA results. Nonlinear Processes Geophys. 2004, 11, 495–503. [Google Scholar] [CrossRef]
- Golińska, A.K. Detrended Fluctuation Analysis (DFA) in Biomedical Signal Processing: Selected Examples. Stud. Logic Gramm. Rhetor. 2012, 29, 107–115. [Google Scholar]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef]
- Kamath, M.V.; Watanabe, M.A.; Upton, A.R.M. (Eds.) Heart Rate Variability (HRV) Signal Analysis: Clinical Applications; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2016. [Google Scholar]
- Kalisky, T.; Ashkenazy, Y.; Havlin, S. Volatility of fractal and multifractal time series. Israel J. Earth Sci. 2007, 65, 47–56. [Google Scholar] [CrossRef] [Green Version]
Length (Points) | H = 0.6 | H = 0.7 | H = 0.8 | H = 0.9 | ||||
---|---|---|---|---|---|---|---|---|
Mean ± sd | RSE (%) | Mean ± sd | RSE (%) | Mean ± sd | RSE (%) | Mean ± sd | RSE (%) | |
Variance-Time Plot | ||||||||
212 | 0.611 ± 0.07 | 2.56 | 0.703 ± 0.04 | 1.27 | 0.783 ± 0.08 | 2.28 | 0.848 ± 0.21 | 5.54 |
213 | 0.541 ± 0.09 | 3.72 | 0.639 ± 0.17 | 5.95 | 0.736 ± 0.21 | 6.38 | 0.834 ± 0.33 | 8.85 |
214 | 0.534 ± 0.13 | 5.44 | 0.626 ± 0.21 | 7.50 | 0.713 ± 0.32 | 10.03 | 0.798 ± 0.41 | 11.49 |
215 | 0.604 ± 0.06 | 2.22 | 0.691 ± 0.10 | 3.24 | 0.771 ± 0.11 | 3.19 | 0.835 ± 0.28 | 7.07 |
216 | 0.578 ± 0.08 | 3.09 | 0.664 ± 0.19 | 6.40 | 0.744 ± 0.22 | 6.61 | 0.835 ± 0.35 | 9.37 |
217 | 0.582 ± 0.07 | 2.69 | 0.671 ± 0.18 | 6.00 | 0.761 ± 0.15 | 4.41 | 0.840 ± 0.27 | 7.19 |
Rescaled range (R/S) method | ||||||||
212 | 0.645 ± 0.21 | 7.28 | 0.730 ± 0.12 | 3.68 | 0.809 ± 0.04 | 1.11 | 0.873 ± 0.11 | 2.82 |
213 | 0.609 ± 0.08 | 2.94 | 0.694 ± 0.03 | 0.97 | 0.775 ± 0.11 | 3.20 | 0.841 ± 0.19 | 5.05 |
214 | 0.607 ± 0.05 | 1.84 | 0.690 ± 0.05 | 1.62 | 0.768 ± 0.13 | 3.78 | 0.851 ± 0.20 | 5.26 |
215 | 0.620 ± 0.09 | 3.25 | 0.681 ± 0.08 | 2.63 | 0.780 ± 0.10 | 2.87 | 0.851 ± 0.21 | 5.52 |
216 | 0.596 ± 0.04 | 1.50 | 0.687 ± 0.06 | 1.95 | 0.763 ± 0.16 | 4.69 | 0.853 ± 0.19 | 4.98 |
217 | 0.601 ± 0.02 | 0.74 | 0.703 ± 0.01 | 0.32 | 0.771 ± 0.14 | 4.06 | 0.856 ± 0.17 | 4.44 |
Wavelet-based method (Daubechies algorithm with 10 coefficients) | ||||||||
212 | 0.579 ± 0.10 | 3.86 | 0.678 ± 0.11 | 3.63 | 0.790 ± 0.05 | 1.42 | 0.930 ± 0.09 | 2.16 |
213 | 0.585 ± 0.06 | 2.29 | 0.687 ± 0.06 | 1.95 | 0.788 ± 0.04 | 1.14 | 0.890 ± 0.07 | 1.76 |
214 | 0.583 ± 0.07 | 2.68 | 0.686 ± 0.08 | 2.61 | 0.787 ± 0.03 | 0.85 | 0.888 ± 0.06 | 1.51 |
215 | 0.606 ± 0.02 | 0.74 | 0.705 ± 0.03 | 0.95 | 0.804 ± 0.03 | 0.83 | 0.904 ± 0.04 | 0.99 |
216 | 0.601 ± 0.01 | 0.37 | 0.702 ± 0.02 | 0.64 | 0.803 ± 0.02 | 0.56 | 0.903 ± 0.03 | 0.74 |
217 | 0.599 ± 0.01 | 0.37 | 0.700 ± 0.01 | 0.32 | 0.801 ± 0.01 | 0.28 | 0.901 ± 0.01 | 0.25 |
Detrended Fluctuation Analysis method | ||||||||
212 | 0.615 ± 0.09 | 3.27 | 0.715 ± 0.10 | 3.13 | 0.814 ± 0.12 | 3.39 | 0.914 ± 0.20 | 4.89 |
213 | 0.614 ± 0.06 | 2.18 | 0.711 ± 0.08 | 2.52 | 0.810 ± 0.10 | 2.76 | 0.910 ± 0.18 | 4.42 |
214 | 0.611 ± 0.05 | 1.83 | 0.710 ± 0.10 | 3.15 | 0.790 ± 0.07 | 1.98 | 0.910 ± 0.09 | 2.21 |
215 | 0.606 ± 0.02 | 0.74 | 0.707 ± 0.02 | 0.63 | 0.808 ± 0.03 | 0.83 | 0.906 ± 0.04 | 0.99 |
216 | 0.605 ± 0.02 | 0.74 | 0.707 ± 0.03 | 0.95 | 0.803 ± 0.03 | 0.84 | 0.904 ± 0.03 | 0.74 |
217 | 0.602 ± 0.01 | 0.37 | 0.707 ± 0.02 | 0.63 | 0.801 ± 0.02 | 0.56 | 0.898 ± 0.02 | 0.50 |
Multifractal Detrended Fluctuation Analysis method | ||||||||
212 | 0.628 ± 0.19 | 6.77 | 0.744 ± 0.17 | 5.11 | 0.825 ± 0.15 | 3.12 | 0.850 ± 0.18 | 4.74 |
213 | 0.627 ± 0.19 | 6.78 | 0.726 ± 0.11 | 3.39 | 0.822 ± 0.10 | 2.79 | 0.876 ± 0.06 | 1.53 |
214 | 0.594 ± 0.09 | 3.39 | 0.714 ± 0.08 | 2.50 | 0.812 ± 0.09 | 1.51 | 0.889 ± 0.06 | 1.51 |
215 | 0.599 ± 0.02 | 0.75 | 0.708 ± 0.03 | 0.95 | 0.792 ± 0.03 | 0.85 | 0.897 ± 0.03 | 0.75 |
216 | 0.601 ± 0.01 | 0.37 | 0.704 ± 0.02 | 0.64 | 0.807 ± 0.02 | 0.55 | 0.908 ± 0.03 | 0.74 |
217 | 0.600 ± 0.01 | 0.37 | 0.703 ± 0.01 | 0.32 | 0.805 ± 0.02 | 0.56 | 0.905 ± 0.01 | 0.25 |
Scale (i,j) | H = 0.6 | H = 0.7 | H = 0.8 | H = 0.9 | ||||
---|---|---|---|---|---|---|---|---|
Mean ± sd | RSE (%) | Mean ± sd | RSE (%) | Mean ± sd | RSE (%) | Mean ± sd | RSE (%) | |
Haar algorithm | ||||||||
(1,10) | 0.596 ± 0.06 | 2.25 | 0.698 ± 0.06 | 1.92 | 0.801 ± 0.07 | 1.95 | 0.904 ± 0.08 | 1.98 |
(2,10) | 0.596 ± 0.04 | 1.50 | 0.699 ± 0.04 | 1.27 | 0.803 ± 0.04 | 1.11 | 0.906 ± 0.06 | 1.48 |
(3,10) | 0.598 ± 0.05 | 1.87 | 0.702 ± 0.05 | 1.59 | 0.806 ± 0.05 | 1.39 | 0.911 ± 0.05 | 1.23 |
(4,10) | 0.599 ± 0.06 | 2.24 | 0.705 ± 0.07 | 2.22 | 0.811 ± 0.06 | 1.65 | 0.917 ± 0.07 | 1.71 |
(5,10) | 0.607 ± 0.07 | 2.57 | 0.714 ± 0.06 | 1.88 | 0.821 ± 0.07 | 1.91 | 0.927 ± 0.09 | 2.17 |
(6,10) | 0.597 ± 0.06 | 2.25 | 0.711 ± 0.06 | 1.89 | 0.824 ± 0.08 | 2.17 | 0.936 ± 0.10 | 2.39 |
Daubechies algorithm with 4 coefficients | ||||||||
(1,10) | 0.599 ± 0.06 | 2.24 | 0.702 ± 0.07 | 2.23 | 0.804 ± 0.08 | 2.22 | 0.906 ± 0.09 | 2.22 |
(2,10) | 0.599 ± 0.03 | 1.12 | 0.702 ± 0.04 | 1.27 | 0.804 ± 0.06 | 1.67 | 0.905 ± 0.06 | 1.48 |
(3,10) | 0.600 ± 0.05 | 1.86 | 0.702 ± 0.03 | 0.96 | 0.804 ± 0.07 | 1.95 | 0.905 ± 0.08 | 1.98 |
(4,10) | 0.603 ± 0.06 | 2.22 | 0.704 ± 0.05 | 1.59 | 0.806 ± 0.08 | 2.22 | 0.908 ± 0.10 | 2.46 |
(5,10) | 0.611 ± 0.07 | 2.56 | 0.713 ± 0.07 | 2.20 | 0.816 ± 0.09 | 2.47 | 0.917 ± 0.11 | 2.68 |
(6,10) | 0.601 ± 0.06 | 2.23 | 0.703 ± 0.08 | 2.54 | 0.805 ± 0.10 | 2.78 | 0.909 ± 0.09 | 2.21 |
Daubechies algorithm with 8 coefficients | ||||||||
(1,10) | 0.610 ± 0.05 | 1.83 | 0.713 ± 0.07 | 2.20 | 0.815 ± 0.09 | 2.47 | 0.916 ± 0.10 | 2.44 |
(2,10) | 0.612 ± 0.04 | 1.46 | 0.714 ± 0.06 | 1.87 | 0.815 ± 0.07 | 1.92 | 0.915 ± 0.08 | 1.96 |
(3,10) | 0.615 ± 0.06 | 2.18 | 0.717 ± 0.07 | 2.18 | 0.817 ± 0.8 | 2.19 | 0.916 ± 0.09 | 2.20 |
(4,10) | 0.625 ± 0.12 | 4.29 | 0.727 ± 0.10 | 3.08 | 0.827 ± 0.12 | 3.24 | 0.926 ± 0.14 | 3.38 |
(5,10) | 0.638 ± 0.19 | 6.66 | 0.739 ± 0.18 | 5.45 | 0.839 ± 0.17 | 4.53 | 0.936 ± 0.19 | 4.54 |
(6,10) | 0.661 ± 0.25 | 8.46 | 0.763 ± 0.26 | 7.62 | 0.862 ± 0.27 | 7.00 | 0.957 ± 0.23 | 5.37 |
Daubechies algorithm with 10 coefficients | ||||||||
(1,10) | 0.600 ± 0.03 | 1.12 | 0.704 ± 0.03 | 0.95 | 0.804 ± 0.04 | 1.11 | 0.908 ± 0.04 | 0.98 |
(2,10) | 0.600 ± 0.01 | 0.37 | 0.701 ± 0.01 | 0.32 | 0.804 ± 0.01 | 0.28 | 0.904 ± 0.01 | 0.25 |
(3,10) | 0.601 ± 0.02 | 0.74 | 0.702 ± 0.02 | 0.64 | 0.803 ± 0.02 | 0.56 | 0.904 ± 0.02 | 0.49 |
(4,10) | 0.605 ± 0.04 | 1.48 | 0.705 ± 0.04 | 1.27 | 0.806 ± 0.04 | 1.11 | 0.907 ± 0.05 | 1.23 |
(5,10) | 0.614 ± 0.06 | 2.19 | 0.715 ± 0.07 | 2.19 | 0.816 ± 0.08 | 2.19 | 0.917 ± 0.07 | 1.22 |
(6,10) | 0.612 ± 0.05 | 1.83 | 0.711 ± 0.05 | 1.57 | 0.813 ± 0.07 | 1.92 | 0.916 ± 0.06 | 1.46 |
Daubechies algorithm with 12 coefficients | ||||||||
(1,10) | 0.601 ± 0.02 | 0.74 | 0.705 ± 0.03 | 0.95 | 0.808 ± 0.04 | 1.11 | 0.911 ± 0.05 | 1.23 |
(2,10) | 0.600 ± -0.01 | 0.37 | 0.704 ± 0.01 | 0.32 | 0.807 ± 0.03 | 0.83 | 0.908 ± 0.04 | 0.98 |
(3,10) | 0.601 ± 0.01 | 0.37 | 0.704 ± 0.01 | 0.32 | 0.807 + 0.03 | 0.83 | 0.908 ± 0.04 | 0.98 |
(4,10) | 0.696 ± 0.03 | 0.96 | 0.710 ± 0.05 | 1.57 | 0.813 ± 0.06 | 1.65 | 0.916 ± 0.07 | 1.71 |
(5,10) | 0.618 ± 0.07 | 2.53 | 0.722 ± 0.09 | 2.79 | 0.826 ± 0.12 | 3.25 | 0.928 ± 0.14 | 3.37 |
(6,10) | 0.626 ± 0.09 | 3.21 | 0.734 ± 0.13 | 3.96 | 0.842 ± 0.18 | 4.78 | 0.948 ± 0.23 | 5.42 |
Parameter | Healthy Subject (Mean ± sd) N = 48 | Unhealthy Subject (Mean ± sd) N = 48 | p-Value |
---|---|---|---|
Wavelet-based method | |||
Hurst exponent | 0.8402 ± 0.012 | 0.6019 ± 0.010 | 0.0001 |
DFA method | |||
α1 | 1.0106 ± 0.091 | 0.6079 ± 0.046 | 0.0001 |
α2 | 0.7913 ± 0.058 | 0.6923 ± 0.082 | 0.0001 |
αall | 0.8530 ± 0.072 | 0.6150 ± 0.071 | 0.0001 |
MFDFA method | |||
Generalized Hurst exponent at q = 2 | 0.8201 ± 0.031 | 0.5932 ± 0.024 | 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gospodinova, E.; Lebamovski, P.; Georgieva-Tsaneva, G.; Bogdanova, G.; Dimitrova, D. Methods for Mathematical Analysis of Simulated and Real Fractal Processes with Application in Cardiology. Mathematics 2022, 10, 3427. https://doi.org/10.3390/math10193427
Gospodinova E, Lebamovski P, Georgieva-Tsaneva G, Bogdanova G, Dimitrova D. Methods for Mathematical Analysis of Simulated and Real Fractal Processes with Application in Cardiology. Mathematics. 2022; 10(19):3427. https://doi.org/10.3390/math10193427
Chicago/Turabian StyleGospodinova, Evgeniya, Penio Lebamovski, Galya Georgieva-Tsaneva, Galina Bogdanova, and Diana Dimitrova. 2022. "Methods for Mathematical Analysis of Simulated and Real Fractal Processes with Application in Cardiology" Mathematics 10, no. 19: 3427. https://doi.org/10.3390/math10193427
APA StyleGospodinova, E., Lebamovski, P., Georgieva-Tsaneva, G., Bogdanova, G., & Dimitrova, D. (2022). Methods for Mathematical Analysis of Simulated and Real Fractal Processes with Application in Cardiology. Mathematics, 10(19), 3427. https://doi.org/10.3390/math10193427