Application of a Variant of Mountain Pass Theorem in Modeling Real Phenomena
Abstract
:1. Introduction
2. Main Result and Theoretical Background with Comments
- (f1)
- f (x, s) = o(|s|), s → 0, uniformly for x ∈ ;
- (f2)
- There exist constants μ> p and r > 0 e.g., for|s| ≥ r,0 < μF(x, s) ≤ sf (x, s).
3. Discussion
3.1. Applications in Modelling of Real Phenomena
3.1.1. Nonlinear Elastic Membrane
- I.
- To characterize a nonlinear elastic membrane under the load f, we can use the following mathematical model:
- II.
- In [49] is proposed a model for the vibration of a nonhomogeneous membrane which is fixed along the boundary. Several materials (with different densities) are investigated following the location of these materials inside Ω by studying the first mode in the vibration of the membrane. Ω is a bounded smooth domain in RN, g is a Lebesgue measurable function verifying the condition 0 ≤ g(x) ≤ H, ∀x ∈ Ω, where H is a positive constant, g0, H. g can be replaced by any Lebesgue measurable function equal to it almost everywhere. Consider the eigenvalue Dirichlet problem:
- III.
- Using Theorem 1 from the previous section, we can propose a proof for the existence of the solution of the nonlinear problem of the elastic membrane under the load f, in the general case when f is a Carathéodory function that fulfills the growth conditions, and the others from the cited result.
3.1.2. Application in Glaciology
3.1.3. Nonlinear Elastic Membrane with p-Pseudo-Laplacian
- Let us take the expression proposed in [52]: for the energy of deformation of the membrane when it is woven out of elastic strings in a rectangular form. Then the phenomenon can be modeled with a Dirichlet problem for the p-pseudo-Laplacian:
- II.
- Take in the above problem I the load f in the general case when f is a Carathéodory function which fulfills the conditions of Theorem 1 and hence we can generalize I quickly.
3.2. Prospects and Future Developments
4. Conclusions
Funding
Conflicts of Interest
References
- Glowinski, R.; Rappaz, J. Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid model in glaciology. Modél. Math. Anal. Numér. 2003, 37, 175–186. [Google Scholar] [CrossRef]
- Pélissier, M.C. Sur Quelques Problèmes Non linéaires En Glaciology; Publications Mathèmatiques d’Orsay. No110, U.E.R.; Mathématique, Université Paris IX: Paris, France, 1975. [Google Scholar]
- Péllissier, M.C.; Reynaud, M.L. Étude d’un modèle mathématique d’écoulement de glacier. RC Acad. Sci. Paris. Sér. I Math. 1974, 279, 531–534. [Google Scholar]
- Akagi, G.; Matsuura, K. Nonlinear diffusion equations driven by the p( · )-Laplacian. Nonlin. Differ. Equ. Appl. 2013, 20, 37–64. [Google Scholar] [CrossRef]
- Diaz, J.I.; Hernandez, J.; Tello, L. On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology. J. Math. Anal. Appl. 1997, 216, 593–613. [Google Scholar] [CrossRef]
- Fayolle, P.A.; Belyaev, A.G. p-Laplace diffusion for distance function estimation, optimal transport approximation, and image enhancement. Comput. Aided Geom. Des. 2018, 67, 1–20. [Google Scholar] [CrossRef]
- Rasouli, S.H. An ecological model with the p-Laplacian and diffusion. Int. J. Biomath. 2016, 9, 1650008. [Google Scholar] [CrossRef]
- Philip, J.R. N-diffusion. Aust. J. Phys. 1961, 14, 1–13. [Google Scholar] [CrossRef]
- Gilbarg, D.; Trudinger, N. Elliptic Partial Differential Equations of Second Order; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Aronsson, G.; Janfalk, U. On Helle-Shaw flow of power-law fluids. Eur. J. Appl. Math. 1992, 3, 343–366. [Google Scholar] [CrossRef]
- Atkinson, C.; Champion, C.R. Some boundary value for the equation ▽(|▽φ|N) = 0. Q. J. Mech. Appl. Math. 1984, 37, 401–419. [Google Scholar] [CrossRef]
- Dang, J.; Hu, Q.; Xia, S.; Zhang, H. Exponential growth of solution for a reaction-diffusion equation with memory and multiple nonlinearities. Res. Appl. Math. 2017, 1, 101258. [Google Scholar] [CrossRef]
- Schowalter, R.E.; Walkington, N.J. Diffusion of fluid in a fissured medium with microstructure. SIAM J. Math. Anal. 1991, 22, 1702–1722. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Dibenedetto, E.; Manfredi, J. Limits as p → ∞ of Δp up = f and related extremal problems. Rend. Sem. Math. Univ. Pol. Torino. Fasc. Spec. 1989, 47, 15–68. [Google Scholar]
- Kawohl, B. A family of torsional creep problems. J. Reine Angew. Math. 1990, 410, 1–22. [Google Scholar]
- Liu, P.; Mu, Z.; Li, W.; Wu, Y.; Li, X. A new mathematical model and experimental validation on foamy-oil flow in developing heavy oil reservoirs. Sci. Rep. 2017, 7, 8534. [Google Scholar] [CrossRef] [PubMed]
- Lie, K.A.; Mallison, B. Mathematical Models for Oil Reservoir Simulation. 2015. Available online: https://www.researchgate.net/publication/287646171 (accessed on 15 January 2021).
- Diaz, J.I. Nonlinear partial differential equations and free boundaries, Vol. I. In Elliptic Equations; Research Notes in Mathematics 106; Pitman Advanced Publishing Program: London, UK, 1985. [Google Scholar]
- Mukherjee, T.; Sreenadh, K. On Dirichlet problem for fractional p-Laplacian with singular non-linearity. Adv. Nonlinear Anal. 2019, 8, 52–72. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Ru, Y. Existence of nontrivial solutions for fractional differential equations with p-Laplacian. J. Funct. Spaces 2019, 2019, 3486410. [Google Scholar] [CrossRef]
- Benedikt, J.; Girg, P.; Kotrla, L.; Takáč, P. Origin of the p-Laplacian and A. Missbach. Electr. J. Diff. Equ. 2018, 16, 1–17. [Google Scholar]
- Lafleche, L.; Salem, S. p-Laplacian Keller-Segel Equation: Fair Competition and Diffusion Dominated Cases. 2018. Available online: https://hal.archives-ouvertes.fr/hal-01883785 (accessed on 28 December 2021).
- Cellina, A. The regularity of solutions of some variational problems, including the p-Laplace equation for 3 ≤ p <4. AIMS 2018, 38, 4071–4085. [Google Scholar]
- Khan, H.; Li, Y.; Sun, H.; Khan, A. Esistence of solution and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator. J. Nonlin. Sci. Appl. 2017, 10, 5219–5229. [Google Scholar] [CrossRef]
- Xu, X. Existence theorems for a crystal surface model involving the p-Laplace operator. SIAM J. Math. Anal. 2017, 50, 1–21. [Google Scholar] [CrossRef]
- Gulsen, T.; Yilmaz, E. Inverse nodal problem for p-Laplacian diffusion equation with polynomially dependent spectral parameter. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 2016, 65, 23–36. [Google Scholar]
- Lee, Y.S.; Chung, S.Y. Extiction and positivity of solutions of the p-Laplacian evolution equation on networks. J. Math. Anal. Appl. 2012, 386, 581–592. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, J. Qualitative properties of a p-Laplacian population model with delay. Adv. Diff. Equ. 2017, 13, 1–21. [Google Scholar] [CrossRef]
- Elmoataz, A.; Toutain, M.; Tenbrinck, D. On the p-Laplacian and ∞-Laplacian on graphs with applications in image and data processing. SIAM J Imag Sci. 2015, 8, 2412–2451. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, D.; Singh, J. Analytical solutions of convection-diffusion problems by combining Laplace transform method and homotopy perturbation method. Alex. Eng. J. 2015, 54, 645–651. [Google Scholar]
- Liero, M.; Koprucki, T.; Fischer, A.; Scholz, R.; Glitzki, A. p-Laplace Thermistor Modeling of Electrothermal Feedback in Organic Semiconductors. Matheon Preprint. 2015. Available online: https://opus4.kobv.de/opus4-matheon/frontdoor/index/index/docId/1337 (accessed on 5 January 2019).
- Silva, M.A.J. On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type. IMA J Appl Math. 2013, 78, 1130–1146. [Google Scholar] [CrossRef]
- Meghea, I. Variational approaches to characterize weak solutions for some problems of mathematical physics equations. Abstr. Appl. Anal. 2016, 2016, 2071926. [Google Scholar] [CrossRef] [Green Version]
- Meghea, I.; Stamin, C.S. On a problem of mathematical physics equations. Bull. UniTBv. Ser. III Math. Inform. Phys. 2018, 11, 169–180. [Google Scholar]
- Meghea, I. On some perturbed variational principles: Connexions and applications. Rev. Roum. Math. Pur. Appl. 2009, 54, 493–511. [Google Scholar]
- Meghea, I. Two solutions for a problem of partial differential equations. UPB Sci. Bull. Ser. A 2010, 72, 41–58. [Google Scholar]
- Meghea, I. Weak solutions for p-pseudo-Laplacian using a perturbed variational principle and via surjectivity results. BSG Proc. 2010, 17, 140–150. [Google Scholar]
- Meghea, I. Some results of Fredholm alternative type for operators of the form λJϕ − S with applications. UPB Sci Bull. Ser. A 2010, 72, 21–32. [Google Scholar]
- Meghea, I. Weak solutions for p-Laplacian and for p-pseudo-Laplacian using surjectivity theorems. BSG Proc. 2011, 18, 67–76. [Google Scholar]
- Meghea, I. Minimax theorem, Mountain Pass theorem and Saddle Point theorem in β-differentiability. Commun. Appl. Nonlin. Anal. 2003, 1, 55–66. [Google Scholar]
- Meghea, I. Ekeland Variational Principles with Generalizations and Variants; Old City Publishing: Philadelphia, PA, USA; Éditions des Archives Contemporaines: Paris, France, 2009. [Google Scholar]
- Ambrosetti, A.; Rabinowitz, P.H. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef]
- Figueiredo, G. Topics in Nonlinear Functional Analysis; University of Maryland: College Park, MD, USA, 1967. [Google Scholar]
- Glowinski, R.; Marocco, A. Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. RAIRO 1975, 9, 41–76. [Google Scholar] [CrossRef]
- Bay, Y.; Gasiński, L.; Papageorgiou, N.S. Positive solutions for nonlinear singular superlinear elliptic equations. Positivity 2019, 23, 761–778. [Google Scholar] [CrossRef]
- Gasiński, L.; Papageorgiou, N.S. Resonant anisotropic (p, q)-equations. Mathematics 2020, 8, 1332. [Google Scholar] [CrossRef]
- Gasiński, L.; Krech, I.; Papageorgiou, N.S. Positive solutions for parametric (p(z), q(z))-equations. Open Math. 2020, 18, 1076–1096. [Google Scholar] [CrossRef]
- Cuccu, F.; Emamizadeh, B.; Porru, G. Nonlinear elastic membranes involving the p-Laplacian operator. Electr. J. Diff. Equ. 2006, 2006, 49. [Google Scholar]
- Cuccu, F.; Emamizadeh, B.; Porru, G. Optimization or the best eigenvalue in problems involving the p-Laplacian. Proc. Amer. Math. Soc. 2009, 137, 1677–1687. [Google Scholar] [CrossRef]
- Lliboutry, L. Traité de Glaciologie; Masson & Cie: Paris, France, 1965. [Google Scholar]
- Lindquist, P. Stability for the solutions of div(|▽u|p−2▽u) = f with varying p. J. Math. Anal. Appl. 1987, 127, 93–102. [Google Scholar] [CrossRef]
- Belloni, M.; Kawohl, B. The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p → ∞. ESAIM Control Optim. Calc. Var. 2004, 10, 28–52. [Google Scholar] [CrossRef]
- Benci, V.; Fortunato, D.; Pisani, L. Solitons like solutions of a Lorenz invariant equation in dimension 3. Rev. Math. Phys. 1998, 10, 315–344. [Google Scholar] [CrossRef]
- Liu, F.; Burrage, K. Parameter estimation for fractional dynamical models in biological systems. In Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications, Badajoz, Spain, 18–20 October 2010; pp. 1–8. [Google Scholar]
- Cadar, D.; Olteanu, N.L.; Andrei, E.A.; Petcu, A.R.; Marin, C.A.; Meghea, A.; Mihaly, M. Synergism of thiocyanate ions and microinterfacial surface as driving forces for heavy multi-metals extraction. Arab. J. Chem. 2018, 11, 501–512. [Google Scholar]
- Cadar, D.; Olteanu, N.L.; Andrei, E.A.; Meghea, A.; Petcu, A.R.; Mihaly, M. Fluid structures used for wastewaters treatment with complex load. Sep. Purif. Technol. 2018, 197, 1–7. [Google Scholar] [CrossRef]
- Cadar, M.; Olteanu, N.L.; Andrei, E.A.; Meghea, A.; Petcu, A.R.; Mihaly, M. Recovery of targeted hydrophilic compounds from simulated wastewaters using nonionic microemulsion systems. Proc. Saf. Environ. Prot. 2017, 109, 648–658. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meghea, I. Application of a Variant of Mountain Pass Theorem in Modeling Real Phenomena. Mathematics 2022, 10, 3476. https://doi.org/10.3390/math10193476
Meghea I. Application of a Variant of Mountain Pass Theorem in Modeling Real Phenomena. Mathematics. 2022; 10(19):3476. https://doi.org/10.3390/math10193476
Chicago/Turabian StyleMeghea, Irina. 2022. "Application of a Variant of Mountain Pass Theorem in Modeling Real Phenomena" Mathematics 10, no. 19: 3476. https://doi.org/10.3390/math10193476
APA StyleMeghea, I. (2022). Application of a Variant of Mountain Pass Theorem in Modeling Real Phenomena. Mathematics, 10(19), 3476. https://doi.org/10.3390/math10193476