Text Mining of User-Generated Content (UGC) for Business Applications in E-Commerce: A Systematic Review
Abstract
:1. Introduction
2. Literature Identification and Collection
2.1. General Overview and Thematic Analysis
2.1.1. Literature Selection and General Overview
2.1.2. Thematic Analysis
2.2. Overview of the Research Framework
2.2.1. Input Data
2.2.2. Preprocessing
2.2.3. Text Mining Models and Techniques
3. UGC in E-Commerce: Sources and Types
4. Techniques for Text Data Mining
4.1. Semantic Analysis
4.1.1. Text Representation
- 1.
- Statistics-based methods
- 2.
- Neural-network-based methods
- 3.
- Transformer-based model
4.1.2. Semantic Understanding
4.2. Opinion Mining and Sentiment Analysis
5. Applications in E-Commerce
5.1. Quality Evaluation of UGC Text
5.1.1. Review Helpfulness
5.1.2. Review Ranking
5.1.3. Spam UGC Detection
5.2. Consumer Profiling
5.2.1. User Requirements and Preferences
5.2.2. Consumer Satisfaction
5.2.3. Consumer Personality
5.3. Product/Service Evaluation and Enhancement
5.4. Personalized Marketing and Recommendation
6. Discussion
6.1. Text Mining Technologies
6.2. Business Applications
6.3. Other Emerging Problems
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ghani, N.A.; Hamid, S.; Hashem, I.A.T.; Ahmed, E. Social media big data analytics: A survey. Comput. Hum. Behav. 2019, 101, 417–428. [Google Scholar] [CrossRef]
- Guo, Y.; Barnes, S.J.; Jia, Q. Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation. Tour. Manag. 2017, 59, 467–483. [Google Scholar] [CrossRef]
- Soyeon, L.; Saerom, L. Does the dispersion of online review ratings affect review helpfulness? Comput. Hum. Behav. 2021, 117, 106670. [Google Scholar]
- Gensler, S.; Völckner, F.; Egger, M.; Fischbach, K.; Schoder, D. Listen to Your Customers: Insights into Brand Image Using Online Consumer-Generated Product Reviews. Int. J. Electron. Commer. 2015, 20, 112–141. [Google Scholar] [CrossRef]
- Qi, J.Y.; Zhang, Z.P.; Jeon, S.M.; Zhou, Y.Q. Mining customer requirements from online reviews: A product improvement perspective. Inf. Manag. 2016, 53, 951–963. [Google Scholar] [CrossRef]
- Hou, T.J.; Yannou, B.; Leroy, Y.; Poirson, E. Mining customer product reviews for product development: A summarization process. Expert Syst. Appl. 2019, 132, 141–150. [Google Scholar] [CrossRef]
- Rambocas, M.; Pacheco, B.G. Online sentiment analysis in marketing research: A review. J. Res. Interact. Mark. 2018, 12, 146–163. [Google Scholar] [CrossRef]
- Stephen, A.T.; Toubia, O. Deriving Value from Social Commerce Networks. J. Mark. Res. 2010, 47, 215–228. [Google Scholar] [CrossRef]
- Chiang, C.-T.; Yang, M.-H.; Koo, T.-L.; Liao, C.H. What Drives Customer Engagement Behavior? The Impact of User Participation from a Sociotechnical Perspective. J. Electron. Commer. Res. 2020, 21, 18. [Google Scholar]
- Xia, H.S.; Yang, Y.T.; Pan, X.T.; Zhang, Z.P.; An, W.Y. Sentiment analysis for online reviews using conditional random fields and support vector machines. Electron. Commer. Res. 2020, 20, 343–360. [Google Scholar] [CrossRef]
- Rangnekar, V.M.; Banker, D.D.; Jhala, H.I. Some phenotypic characteristics of group H plasmids from human isolates of Salmonella & Escherichia coli. Indian J. Med. Res. 1983, 78, 450–453. [Google Scholar] [PubMed]
- Park, S.; Kim, H.M. Phrase Embedding and Clustering for Sub-Feature Extraction From Online Data. J. Mech. Des. 2022, 144, 10. [Google Scholar] [CrossRef]
- Li, S.G.; Zhang, Y.Q.; Li, Y.M.; Yu, Z.X. The user preference identification for product improvement based on online comment patch. Electron. Commer. Res. 2021, 21, 423–444. [Google Scholar] [CrossRef]
- Salloum, S.A.; Khan, R.; Shaalan, K. A Survey of Semantic Analysis Approaches. In Proceedings of the International Conference on Artificial Intelligence and Computer Vision (AICV2020), Settat, Morocco, 28–30 June 2020; pp. 61–70. [Google Scholar]
- Meng, Y.; Yang, N.H.; Qian, Z.L.; Zhang, G.Y. What Makes an Online Review More Helpful: An Interpretation Framework Using XGBoost and SHAP Values. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 466–490. [Google Scholar] [CrossRef]
- Burtch, G.; He, Q.; Hong, Y.; Lee, D. How Do Peer Awards Motivate Creative Content? Experimental Evidence from Reddit. Manag. Sci. 2021, 68, 3175–3973. [Google Scholar] [CrossRef]
- Li, Y.M.; Wei, B.G.; Liu, Y.H.; Yao, L.; Chen, H.; Yu, J.F.; Zhu, W.H. Incorporating knowledge into neural network for text representation. Expert Syst. Appl. 2018, 96, 103–114. [Google Scholar] [CrossRef]
- Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their Compositionality. arXiv 2013, arXiv:1310.4546v1. [Google Scholar]
- Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the 31st International Conference on Machine Learning, Bejing, China, 22–24 June 2014; pp. 1188–1196. [Google Scholar]
- Goldberg, Y. A Primer on Neural Network Models for Natural Language Processing. J. Artif. Intell. Res. 2016, 57, 345–420. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2019, arXiv:1810.04805v2. [Google Scholar]
- Ranaldi, L.; Fallucchi, F.; Zanzotto, F.M. Dis-Cover AI Minds to Preserve Human Knowledge. Future Internet 2022, 14, 10. [Google Scholar] [CrossRef]
- Gupta, I.; Chatterjee, I.; Gupta, N. Latent Semantic Analysis based Real-world Application of Topic Modeling: A Review Study. In Proceedings of the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 23–25 February 2022; pp. 1142–1149. [Google Scholar]
- Egger, R.; Yu, J.N. A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic to Demystify Twitter Posts. Front. Sociol. 2022, 7, 886498. [Google Scholar] [CrossRef] [PubMed]
- Grootendorst, M. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv 2022, arXiv:2203.05794v1. [Google Scholar]
- Filieri, R.; Galati, F.; Raguseo, E. The impact of service attributes and category on eWOM helpfulness: An investigation of extremely negative and positive ratings using latent semantic analytics and regression analysis. Comput. Hum. Behav. 2021, 114, 106527. [Google Scholar] [CrossRef]
- Cai, M.; Tan, Y.; Ge, B.; Dou, Y.; Huang, G.; Du, Y. PURA: A Product-and-User Oriented Approach for Requirement Analysis From Online Reviews. IEEE Syst. J. 2022, 16, 566–577. [Google Scholar] [CrossRef]
- Araie, M.; Takase, M. Befunolol isomers and aqueous humor dynamic in man (author’s transl). Nippon Ganka Gakkai Zasshi 1981, 85, 44–49. [Google Scholar]
- Alrababah, S.A.A.; Gan, K.H.; Tan, T.P. Mining opinionated product features using WordNet lexicographer files. J. Inf. Sci. 2017, 43, 769–785. [Google Scholar] [CrossRef]
- Yan, Z.J.; Xing, M.M.; Zhang, D.S.; Ma, B.Z. EXPRS: An extended pagerank method for product feature extraction from online consumer reviews. Inf. Manag. 2015, 52, 850–858. [Google Scholar] [CrossRef]
- Kang, Y.; Zhou, L.N. RubE: Rule-based methods for extracting product features from online consumer reviews. Inf. Manag. 2017, 54, 166–176. [Google Scholar] [CrossRef]
- Chauhan, N.; Singh, P. Identifying the Opinion Orientation of Online Product Reviews at Feature Level: A Pruning Approach. Int. J. Inf. Syst. Modeling Des. 2017, 8, 92–111. [Google Scholar] [CrossRef]
- Yong, S.; Asano, Y. Purpose-Feature Relationship Mining from Online Reviews towards Purpose-Oriented Recommendation. IEICE Trans. Inf. Syst. 2018, E101d, 1021–1029. [Google Scholar] [CrossRef]
- Kim, S.J.; Maslowska, E.; Malthouse, E.C. Understanding the effects of different review features on purchase probability. Int. J. Advert. 2018, 37, 29–53. [Google Scholar] [CrossRef]
- Alamoudi, E.S.; Alghamdi, N.S. Sentiment classification and aspect-based sentiment analysis on yelp reviews using deep learning and word embeddings. J. Decis. Syst. 2021, 30, 259–281. [Google Scholar] [CrossRef]
- Wang, A.N.; Zhang, Q.; Zhao, S.Y.; Lu, X.N.; Peng, Z.L. A review-driven customer preference measurement model for product improvement: Sentiment-based importance-performance analysis. Inf. Syst. E-Bus. Manag. 2020, 18, 61–88. [Google Scholar] [CrossRef]
- Zhang, H.; Rao, H.G.; Feng, J.Z. Product innovation based on online review data mining: A case study of Huawei phones. Electron. Commer. Res. 2018, 18, 3–22. [Google Scholar] [CrossRef]
- Malik, M.S.I.; Hussain, A. Helpfulness of product reviews as a function of discrete positive and negative emotions. Comput. Hum. Behav. 2017, 73, 290–302. [Google Scholar] [CrossRef]
- Cambria, E.; Schuller, B.; Xia, Y.Q.; Havasi, C. New Avenues in Opinion Mining and Sentiment Analysis. IEEE Intell. Syst. 2013, 28, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Ji, P.; Kwong, C.K. What makes consumers unsatisfied with your products: Review analysis at a fine-grained level. Eng. Appl. Artif. Intell. 2016, 47, 38–48. [Google Scholar] [CrossRef]
- Wang, X.H.; Dong, S. Users’ Sentiment Analysis of Shopping Websites Based on Online Reviews. Appl. Math. Nonlinear Sci. 2020, 5, 493–502. [Google Scholar] [CrossRef]
- Asghar, M.Z.; Khan, A.; Zahra, S.R.; Ahmad, S.; Kundi, F.M. Aspect-based opinion mining framework using heuristic patterns. Cluster Comput. 2019, 22, S7181–S7199. [Google Scholar] [CrossRef]
- Afzaal, M.; Usman, M.; Fong, A. Predictive aspect-based sentiment classification of online tourist reviews. J. Inf. Sci. 2019, 45, 341–363. [Google Scholar] [CrossRef]
- Xu, H.P.; Zhang, Y.H.; Degroof, R. A Feature-Based Sentence Model for Evaluation of Similar Online Products. J. Electron. Commer. Res. 2018, 19, 320–335. [Google Scholar]
- Wang, W.M.; Tian, Z.G.; Li, Z.; Wang, J.W.; Barenji, A.V.; Cheng, M.N. Supporting the construction of affective product taxonomies from online customer reviews: An affective-semantic approach. J. Eng. Des. 2019, 30, 445–476. [Google Scholar] [CrossRef]
- Turner, P.S. Transformation of an unspecific chronic ulcer of the tongue into squamous cell carcinoma. Quintessence Int. Dent. Dig. 1983, 14, 703–707. [Google Scholar]
- Liu, Y.; Bi, J.W.; Fan, Z.P. Ranking products through online reviews: A method based on sentiment analysis technique and intuitionistic fuzzy set theory. Inf. Fusion 2017, 36, 149–161. [Google Scholar] [CrossRef]
- Darwich, M.; Mohd Noah, S.A.; Omar, N.; Osman, N. Corpus-Based Techniques for Sentiment Lexicon Generation: A Review. J. Digit. Inf. Manag. 2019, 17, 296. [Google Scholar] [CrossRef]
- Peng, H.Y.; Cambria, E.; Hussain, A. A Review of Sentiment Analysis Research in Chinese Language. Cogn. Comput. 2017, 9, 423–435. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Li, J.; Du, J. The Role of Sentiment Tendency in Affecting Review Helpfulness for Durable Products: Nonlinearity and Complementarity. Inf. Syst. Front. 2022, 158, 1–19. [Google Scholar] [CrossRef]
- Vinodhini, G.; Chandrasekaran, R.M. A sampling based sentiment mining approach for e-commerce applications. Inf. Process. Manag. 2017, 53, 223–236. [Google Scholar] [CrossRef]
- Su, Y.; Shen, Y. A Deep Learning-Based Sentime.ent Classification Model for Real Online Consumption. Front. Psychol. 2022, 13, 886982. [Google Scholar] [CrossRef]
- Sun, Q.; Niu, J.W.; Yao, Z.; Yan, H. Exploring eWOM in online customer reviews: Sentiment analysis at a fine-grained level. Eng. Appl. Artif. Intell. 2019, 81, 68–78. [Google Scholar] [CrossRef]
- Munikar, M.; Shakya, S.; Shrestha, A. Fine-grained Sentiment Classification using BERT. In Proceedings of the 2019 Artificial Intelligence for Transforming Business and Society (AITB), Kathmandu, Nepal, 5 November 2019; Volume 1, pp. 1–5. [Google Scholar]
- Saumya, S.; Singh, J.P.; Baabdullah, A.M.; Rana, N.P.; Dwivedi, Y.K. Ranking online consumer reviews. Electron. Commer. Res. Appl. 2018, 29, 78–89. [Google Scholar] [CrossRef]
- Banerjee, S.; Bhattacharyya, S.; Bose, I. Whose online reviews to trust? Understanding reviewer trustworthiness and its impact on business. Decis. Support. Syst. 2017, 96, 17–26. [Google Scholar] [CrossRef]
- Hu, N.; Bose, I.; Koh, N.S.; Liu, L. Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decis. Support Syst. 2012, 52, 674–684. [Google Scholar] [CrossRef]
- Filieri, R.; Hofacker, C.F.; Alguezaui, S. What makes information in online consumer reviews diagnostic over time? The role of review relevancy, factuality, currency, source credibility and ranking score. Comput. Hum. Behav. 2018, 80, 122–131. [Google Scholar] [CrossRef]
- Li, M.X.; Huang, L.Q.; Tan, C.H.; Wei, K.K. Helpfulness of Online Product Reviews as Seen by Consumers: Source and Content Features. Int. J. Electron. Commer. 2013, 17, 101–136. [Google Scholar] [CrossRef]
- Choi, H.S.; Leon, S. An empirical investigation of online review helpfulness: A big data perspective. Decis. Support. Syst. 2020, 139, 113403. [Google Scholar] [CrossRef]
- Yagci, I.A.; Das, S. Measuring design-level information quality in online reviews. Electron. Commer. Res. Appl. 2018, 30, 102–110. [Google Scholar] [CrossRef]
- Chatterjee, S. Drivers of helpfulness of online hotel reviews: A sentiment and emotion mining approach. Int. J. Hosp. Manag. 2020, 85, 9. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, L.; Kehoe, J.L.; Kilic, I.Y. What Online Reviewer Behaviors Really Matter? Effects of Verbal and Nonverbal Behaviors on Detection of Fake Online Reviews. J. Manag. Inform. Syst. 2016, 33, 456–481. [Google Scholar] [CrossRef]
- Wu, C.J.; Mai, F.; Li, X.L. The effect of content depth and deviation on online review helpfulness: Evidence from double-hurdle model. Inf. Manag. 2021, 58, 103408. [Google Scholar] [CrossRef]
- Li, J.; Zhan, L.J. Online Persuasion: How the Written Word Drives WOM Evidence from Consumer-Generated Product Reviews. J. Advert. Res. 2011, 51, 239–257. [Google Scholar] [CrossRef]
- Kang, Y.; Zhou, L.N. Helpfulness Assessment of Online Reviews: The Role of Semantic Hierarchy of Product Features. ACM Trans. Manag. Inf. Syst. 2019, 10, 18. [Google Scholar] [CrossRef]
- Nilsson, M.O.; Hultin, T. Analysis of the membrane-associated poly(A)+RNA in the cytoplasm of dormant Artemia cysts by DNA excess hybridization. Evidence for a nuclear origin. Biochim. Biophys. Acta 1982, 696, 253–259. [Google Scholar] [CrossRef]
- Lee, J.H.; Jung, S.H.; Park, J. The role of entropy of review text sentiments on online WOM and movie box office sales. Electron. Commer. Res. Appl. 2017, 22, 42–52. [Google Scholar] [CrossRef]
- Cezar, A.; Ogut, H. Analyzing conversion rates in online hotel booking The role of customer reviews, recommendations and rank order in search listings. Int. J. Contemp. Hosp. Manag. 2016, 28, 286–304. [Google Scholar] [CrossRef]
- Suryadi, D.; Kim, H. A Systematic Methodology Based on Word Embedding for Identifying the Relation Between Online Customer Reviews and Sales Rank. J. Mech. Des. 2018, 140, 12. [Google Scholar] [CrossRef]
- Dash, A.; Zhang, D.S.; Zhou, L.N. Personalized Ranking of Online Reviews Based on Consumer Preferences in Product Features. Int. J. Electron. Commer. 2021, 25, 29–50. [Google Scholar] [CrossRef]
- Paul, H.; Nikolaev, A. Fake review detection on online E-commerce platforms: A systematic literature review. Data Min. Knowl. Discov. 2021, 35, 1830–1881. [Google Scholar] [CrossRef]
- Kauffmann, E.; Peral, J.; Gil, D.; Ferrandez, A.; Sellers, R.; Mora, H. A framework for big data analytics in commercial social networks: A case study on sentiment analysis and fake review detection for marketing decision-making. Ind. Mark. Manag. 2020, 90, 523–537. [Google Scholar] [CrossRef]
- Saumya, S.; Singh, J.P. Spam review detection using LSTM autoencoder: An unsupervised approach. Electron. Commer. Res. 2022, 22, 113–133. [Google Scholar] [CrossRef]
- Li, S.G.; Liu, F.; Lu, H.Y.; Zhang, Y.Q.; Li, Y.M.; Yu, Z.X. Product family lean improvement based on matching deep mining of customer group preference. Res. Eng. Des. 2021, 32, 469–488. [Google Scholar] [CrossRef]
- Qiu, F.; Cho, J. Automatic identification of user interest for personalized search. In Proceedings of the 15th International Conference on World Wide Web, Edinburgh, UK, 23–26 May 2006; pp. 727–736. [Google Scholar]
- Hong, W.; Zheng, C.Y.; Wu, L.H.; Pu, X.J. Analyzing the Relationship between Consumer Satisfaction and Fresh E-Commerce Logistics Service Using Text Mining Techniques. Sustainability 2019, 11, 3570. [Google Scholar] [CrossRef]
- Xu, X. What are customers commenting on, and how is their satisfaction affected? Examining online reviews in the on-demand food service context. Decis. Support Syst. 2021, 142, 113467. [Google Scholar] [CrossRef]
- Bi, J.W.; Liu, Y.; Fan, Z.P.; Zhang, J. Exploring asymmetric effects of attribute performance on customer satisfaction in the hotel industry. Tour. Manag. 2020, 77, 104006. [Google Scholar] [CrossRef]
- Liu, H.Y.; He, J.; Wang, T.T.; Song, W.T.; Du, X.Y. Combining user preferences and user opinions for accurate recommendation. Electron. Commer. Res. Appl. 2013, 12, 14–23. [Google Scholar] [CrossRef]
- Chen, R.Y.; Wang, Q.L.; Xu, W. Mining user requirements to facilitate mobile app quality upgrades with big data. Electron. Commer. Res. Appl. 2019, 38, 11. [Google Scholar] [CrossRef]
- Ekutsu, M.; Floras, P.; Macrez, P.; Bidabe, A.M.; Caille, J.M. Sedation for tomodensitometric examination in children. Cah. Anesthesiol. 1984, 32, 375–378. [Google Scholar]
- Kasper, G.; de Siqueira Braga, D.; Martins, D.M.L.; Hellingrath, B. User profile acquisition: A comprehensive framework to support personal information agents. In Proceedings of the 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, Peru, 8–10 November 2017; pp. 1–6. [Google Scholar]
- Chen, H.C.; Chiang, R.H.L.; Storey, V.C. Business Intelligence and Analytics: From Big Data to Big Impact. MIS Q. 2012, 36, 1165–1188. [Google Scholar] [CrossRef]
- Sun, H.; Guo, W.; Shao, H.Y.; Rong, B. Dynamical mining of ever-changing user requirements: A product design and improvement perspective. Adv. Eng. Inform. 2020, 46, 101174. [Google Scholar] [CrossRef]
- Zhou, S.H.; Qiao, Z.L.; Du, Q.Z.; Wang, G.A.; Fan, W.G.; Yan, X.B. Measuring Customer Agility from Online Reviews Using Big Data Text Analytics. J. Manag. Inform. Syst. 2018, 35, 510–539. [Google Scholar] [CrossRef]
- Kim, C.; Na, Y. Consumer reviews analysis on cycling pants in online shopping malls using text mining. Fash. Text. 2021, 8, 38. [Google Scholar] [CrossRef]
- Bi, J.W.; Liu, Y.; Fan, Z.P.; Cambria, E. Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model. Int. J. Prod. Res. 2019, 57, 7068–7088. [Google Scholar] [CrossRef]
- Hou, T.J.; Yannou, B.; Leroy, Y.; Poirson, E. Mining Changes in User Expectation Over Time From Online Reviews. J. Mech. Des. 2019, 141, 10. [Google Scholar] [CrossRef]
- Francesco, G.; Roberta, G. Cross-country analysis of perception and emphasis of hotel attributes. Tour. Manag. 2019, 74, 24–42. [Google Scholar] [CrossRef]
- Chatterjee, S.; Goyal, D.; Prakash, A.; Sharma, J. Exploring healthcare/health-product ecommerce satisfaction: A text mining and machine learning application. J. Bus. Res. 2021, 131, 815–825. [Google Scholar] [CrossRef]
- Xia Liu, A.; Yilin, L.; Sean Xin, X. Assessing the Unacquainted: Inferred Reviewer Personality and Review Helpfulness. MIS Q. 2021, 45, 1113–1148. [Google Scholar]
- Donthu, N.; Kumar, S.; Pandey, N.; Pandey, N.; Mishra, A. Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. J. Bus. Res. 2021, 135, 758–773. [Google Scholar] [CrossRef]
- Deng, L.; Gao, J.; Vuppalapati, C. Building a Big Data Analytics Service Framework for Mobile Advertising and Marketing. In Proceedings of the 2015 IEEE First International Conference on Big Data Computing Service and Applications, Redwood City, CA, USA, 30 March–2 April 2015; pp. 256–266. [Google Scholar]
- Baum, D.; Spann, M. The Interplay Between Online Consumer Reviews and Recommender Systems: An Experimental Analysis. Int. J. Electron. Commer. 2014, 19, 129–161. [Google Scholar] [CrossRef]
- Hernandez-Rubio, M.; Cantador, I.; Bellogin, A. A comparative analysis of recommender systems based on item aspect opinions extracted from user reviews. User Model. User-Adapt. Interact. 2019, 29, 381–441. [Google Scholar] [CrossRef]
- Forhad, M.S.A.; Arefin, M.S.; Kayes, A.S.M.; Ahmed, K.; Chowdhury, M.J.M.; Kumara, I. An Effective Hotel Recommendation System through Processing Heterogeneous Data. Electronics 2021, 10, 21. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.W. Opinion-enhanced collaborative filtering for recommender systems through sentiment analysis. New Rev. Hypermedia Multimed. 2015, 21, 278–300. [Google Scholar] [CrossRef]
- Yuqiao, Y.; Weiping, Z.; Fangdan, L.; Hongli, Z. Personalized information recommendation simulation system based on compound recommendation algorithm—A research tool to study the push effect of algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2020, 740, 012167. [Google Scholar] [CrossRef]
- DeLong, K.A.; Troyer, M.; Kutas, M. Pre-processing in sentence comprehension: Sensitivity to likely upcoming meaning and structure. Lang. Linguist. Compass 2014, 8, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.S.; Renda, A.I.; Correia, M.B.; Antonio, N. Hotel customer segmentation and sentiment analysis through online reviews: An analysis of selected European markets. Tour. Manag. Stud. 2022, 18, 29–40. [Google Scholar] [CrossRef]
- Yuan, H.; Xu, W.; Li, Q.; Lau, R. Topic sentiment mining for sales performance prediction in e-commerce. Ann. Oper. Res. 2018, 270, 553–576. [Google Scholar] [CrossRef]
- Skoric, M.; Poor, N.; Achananuparp, P.; Lim, E.-P.; Jiang, J. Tweets and votes: A study of the 2011 singapore general election. In Proceedings of the 2012 45th Hawaii International Conference On System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 2583–2591. [Google Scholar]
- Zou, H.; Tang, X.; Xie, B.; Liu, B. Sentiment classification using machine learning techniques with syntax features. In Proceedings of the 2015 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 7–9 December 2015; pp. 175–179. [Google Scholar]
- Ghose, A.; Ipeirotis, P.G.; Li, B.B. Modeling Consumer Footprints on Search Engines: An Interplay with Social Media. Manag. Sci. 2019, 65, 1363–1385. [Google Scholar] [CrossRef]
- Xu, Y.B.; Yang, Y.J.; Han, J.Y.; Wang, E.; Ming, J.C.; Xiong, H. Slanderous user detection with modified recurrent neural networks in recommender system. Inf. Sci. 2019, 505, 265–281. [Google Scholar] [CrossRef]
- Zheng, X.L.; Zhu, S.; Lin, Z.X. Capturing the essence of word-of-mouth for social commerce: Assessing the quality of online e-commerce reviews by a semi-supervised approach. Decis. Support. Syst. 2013, 56, 211–222. [Google Scholar] [CrossRef]
- Li, J.P.; Yao, Y.H.; Xu, Y.J.; Li, J.Y.; Wei, L.; Zhu, X.Q. Consumer’s risk perception on the Belt and Road countries: Evidence from the cross-border e-commerce. Electron. Commer. Res. 2019, 19, 823–840. [Google Scholar] [CrossRef]
- Chen, F.; Xia, J.X.; Gao, H.H.; Xu, H.H.; Wei, W. TRG-DAtt: The Target Relational Graph and Double Attention Network Based Sentiment Analysis and Prediction for Supporting Decision Making. ACM Trans. Manag. Inf. Syst. 2022, 13, 1–25. [Google Scholar] [CrossRef]
- Wang, H.W.; Gao, S.; Yin, P.; Liu, J.N.K. Competitiveness analysis through comparative relation mining Evidence from restaurants’ online reviews. Ind. Manag. Data Syst. 2017, 117, 672–687. [Google Scholar] [CrossRef]
- Song, C.; Zheng, L.; Shan, X. An analysis of public opinions regarding Internet-famous food: A 2016–2019 case study on Dianping. Br. Food J. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Neirotti, P.; Raguseo, E.; Paolucci, E. Are customers’ reviews creating value in the hospitality industry? Exploring the moderating effects of market positioning. Int. J. Inf. Manag. 2016, 36, 1133–1143. [Google Scholar] [CrossRef]
- Kumar, S.; Chowdary, C.R. Semantic model to extract tips from hotel reviews. Electron. Commer. Res. 2020, 259, 1–19. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Xu, X.; Wang, M.S. Predicting overall customer satisfaction: Big data evidence from hotel online textual reviews. Int. J. Hosp. Manag. 2019, 76, 111–121. [Google Scholar] [CrossRef]
- Raguseo, E.; Neirotti, P.; Paolucci, E. How small hotels can drive value their way in infomediation. The case of ‘Italian hotels vs. OTAs and TripAdvisor’. Inf. Manag. 2017, 54, 745–756. [Google Scholar] [CrossRef]
- Liu, M.T.C.; Liu, Y.D.; Mo, Z.Y.; Ng, K.L. Using text mining to track changes in travel destination image: The case of Macau. Asia Pac. J. Mark. Logist. 2021, 33, 373–395. [Google Scholar] [CrossRef]
- Zhang, T.X.; He, Z.; Zhao, X.J.; Qu, L. Joint monit.toring of post-sales online review processes based on a distribution-free EWMA scheme. Comput. Ind. Eng. 2021, 158, 107372. [Google Scholar] [CrossRef]
- Mohawesh, R.; Tran, S.; Ollington, R.; Xu, S.X. Analysis of concept drift in fake reviews detection. Expert Syst. Appl. 2021, 169, 114318. [Google Scholar] [CrossRef]
- Bilal, M.; Marjani, M.; Hashem, I.A.T.; Malik, N.; Lali, M.I.U.; Gani, A. Profiling reviewers’ social network strength and predicting the “Helpfulness” of online customer reviews. Electron. Commer. Res. Appl. 2021, 45, 101026. [Google Scholar] [CrossRef]
- Nakayama, M.; Wan, Y. The cultural impact on social commerce: A sentiment analysis on Yelp ethnic restaurant reviews. Inf. Manag. 2019, 56, 271–279. [Google Scholar] [CrossRef]
- Sandulescu, V.; Ester, M. Detecting Singleton Review Spammers Using Semantic Similarity. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 971–976. [Google Scholar]
- Rui, H.; Liu, Y.; Whinston, A. Whose and what chatter matters? The effect of tweets on movie sales. Decis. Support Syst. 2013, 55, 863–870. [Google Scholar] [CrossRef]
- Jagiripu, I.P.; Mishra, P.K.; Saini, A.; Biswal, A. Testing the impact of uncertainty reducing reviews in the prediction of cross domain social media pages ratings. J. Indian Bus. Res. 2022, 14, 150–166. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, G.Q.; Wei, Q. Finding users preferences from large-scale online reviews for personalized recommendation. Electron. Commer. Res. 2017, 17, 3–29. [Google Scholar] [CrossRef]
- Yang, M.; Ma, Y.; Nie, J. Research on a Personalized Recommendation Algorithm. Int. J. Grid Distrib. Comput. 2017, 10, 123–136. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhang, X.; Zhang, H.Y. Hotel recommendation approach based on the online consumer reviews using interval neutrosophic linguistic numbers. J. Intell. Fuzzy Syst. 2018, 34, 381–394. [Google Scholar] [CrossRef]
- Huang, Z.; Benyoucef, M. From e-commerce to social commerce: A close look at design features. Electron. Commer. Res. Appl. 2013, 12, 246–259. [Google Scholar] [CrossRef]
- Salloum, S.A.; Al-Emran, M.; Monem, A.A.; Shaalan, K. A Survey of Text Mining in Social Media: Facebook and Twitter Perspectives. Adv. Sci. Technol. Eng. Syst. J. 2017, 2, 127–133. [Google Scholar]
- Hotho, A.; Nurnberger, A.; Paaß, G.; Augustin, S. A Brief Survey of Text Mining. ResearchGate 2005, 37, 19–62. [Google Scholar]
- Hsiao, Y.H.; Chen, M.C.; Liao, W.C. Logistics service design for cross-border E-commerce using Kansei engineering with text-mining-based online content analysis. Telemat. Inform. 2017, 34, 284–302. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, Y.X.; Fan, L.W.; Li, Y.H. Customized ranking for products through online reviews: A method incorporating prospect theory with an improved VIKOR. Appl. Intell. 2020, 50, 1725–1744. [Google Scholar] [CrossRef]
- Li, M. Research on Extraction of Useful Tourism Online Reviews Based on Multimodal Feature Fusion. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 2021, 20, 16. [Google Scholar] [CrossRef]
- Liu, W.; Long, S.; Xie, D.; Liang, Y.; Wang, J. How to govern the big data discriminatory pricing behavior in the platform service supply chain?An examination with a three-party evolutionary game model. Int. J. Prod. Econ. 2021, 231, 107910. [Google Scholar] [CrossRef]
- Nanne, A.J.; Antheunis, M.L.; van der Lee, C.G.; Postma, E.O.; Wubben, S.; van Noort, G. The Use of Computer Vision to Analyze Brand-Related User Generated Image Content. J. Interact. Mark. 2020, 50, 156–167. [Google Scholar] [CrossRef]
Sources | Count |
---|---|
EXPERT SYSTEMS WITH APPLICATIONS | 57 |
DECISION SUPPORT SYSTEMS | 56 |
IEEE ACCESS | 51 |
arXiv | 41 |
ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING | 39 |
ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS | 31 |
SUSTAINABILITY | 31 |
ELECTRONIC COMMERCE RESEARCH | 28 |
COMPUTERS IN HUMAN BEHAVIOR | 24 |
INTERNET RESEARCH | 21 |
INDUSTRIAL MANAGEMENT & DATA SYSTEMS | 19 |
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS | 17 |
INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT | 17 |
KYBERNETES | 17 |
SOFT COMPUTING | 16 |
ASIA PACIFIC JOURNAL OF MARKETING AND LOGISTICS | 15 |
JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH | 15 |
ONLINE INFORMATION REVIEW | 15 |
INFORMATION SYSTEMS RESEARCH | 14 |
JOURNAL OF BUSINESS RESEARCH | 14 |
KNOWLEDGE-BASED SYSTEMS | 14 |
BRITISH FOOD JOURNAL | 13 |
INFORMATION SCIENCES | 13 |
JOURNAL OF RETAILING AND CONSUMER SERVICES | 13 |
INFORMATION PROCESSING & MANAGEMENT | 12 |
MULTIMEDIA TOOLS AND APPLICATIONS | 12 |
TELEMATICS AND INFORMATICS | 12 |
APPLIED SCIENCES-BASEL | 11 |
ELECTRONIC MARKETS | 11 |
EUROPEAN JOURNAL OF MARKETING | 11 |
INFORMATION & MANAGEMENT | 11 |
Sources | Count |
---|---|
ACM International Conference Proceeding Series | 57 |
International Conference on Information Systems, ICIS | 16 |
Journal of Physics: Conference Series | 15 |
Proceedings of the Annual Hawaii International Conference on System Sciences | 9 |
Proceedings of the International Conference on Electronic Business (ICEB) | 9 |
Research Topic | Research Items | Representative Papers | % of Hits |
Semantic analysis | Feature extraction Topic mining Lexicon building Text representation Semantic understanding | [2,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34] | 16.63 (564/3392) |
Sentiment analysis | Sentiment mining Opinion mining Sentiment classification | [5,10,13,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54] | 72.58 (2462/3392) |
Text quality mining | Review helpfulness EWOM helpfulness Credibility Review ranking Review quality Spam detection Fake review dectection | [38,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74] | 10.08 (342/3392) |
Consumer profiling | Preference analysis User requirements/needs/demands Requirement and expectation User satisfaction Personality | [2,5,6,12,13,27,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92] | 7.52 (255/3392) |
Product design | Attribute performance Performance analysis Product/service development Product/service improvement Product/service attributes Product/service features Product/service quality | [4,86,93] | 6.63 (225/3392) |
Marketing and recommendation | Marketing strategies Recommendation systems Product recommendation Recommenders Product ranking Promotions | [69,80,94,95,96,97,98,99] | 18.66 (633/3392) |
Websites | Studies |
---|---|
Online shopping malls | |
Amazon | [106,107] |
JD | [5,77,106] |
Tmall or Taobao | [106,108] |
On-demand services | |
Meituan | [109] |
Dianping | [110,111] |
Grubhub | [78] |
Travel websites | |
Tripadvisor | [79,112,113,114,115] |
Ctrip | [116,117] |
Review websites | |
Yelp | [56,106,118,119,120,121] |
Trustpilot | [121] |
Social media platforms | |
[122] | |
[123] |
Additional Data | Description | References |
---|---|---|
Ratings | Star ratings or scores of each review record. | [13,37,80] |
Sales data | Market-level data of a product/brand concerning sales | [81,124] |
Interaction data | The comments, replies, favorites, likes, visits, and shares of each UGC item | [38,56,58,59] |
Individual data | Demographic characteristics, personalized preference characteristics, individual tags, and historical behavior data | [76,125,126] |
Supplementary data | For example, opinions from experts and surveys | [57,82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, F.; Zhang, Y.; Zhu, B.; Zhu, H.; Yu, Z. Text Mining of User-Generated Content (UGC) for Business Applications in E-Commerce: A Systematic Review. Mathematics 2022, 10, 3554. https://doi.org/10.3390/math10193554
Li S, Liu F, Zhang Y, Zhu B, Zhu H, Yu Z. Text Mining of User-Generated Content (UGC) for Business Applications in E-Commerce: A Systematic Review. Mathematics. 2022; 10(19):3554. https://doi.org/10.3390/math10193554
Chicago/Turabian StyleLi, Shugang, Fang Liu, Yuqi Zhang, Boyi Zhu, He Zhu, and Zhaoxu Yu. 2022. "Text Mining of User-Generated Content (UGC) for Business Applications in E-Commerce: A Systematic Review" Mathematics 10, no. 19: 3554. https://doi.org/10.3390/math10193554
APA StyleLi, S., Liu, F., Zhang, Y., Zhu, B., Zhu, H., & Yu, Z. (2022). Text Mining of User-Generated Content (UGC) for Business Applications in E-Commerce: A Systematic Review. Mathematics, 10(19), 3554. https://doi.org/10.3390/math10193554