The Exact Solutions for Several Partial Differential-Difference Equations with Constant Coefficients
Abstract
:1. Introduction and Some Basic Results
2. Results and Examples
3. Some Lemmas
4. The Proof of Theorem 4
5. The Proof of Theorem 5
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gross, F. On the equation fn + gn = 1. Bull. Am. Math. Soc. 1966, 72, 86–88. [Google Scholar] [CrossRef] [Green Version]
- Montel, P. Lecons sur les Familles Normales de Fonctions Analytiques et Leurs Applications; Gauthier-Villars: Paris, France, 1927; pp. 135–136. [Google Scholar]
- Pólya, G. On an integral function of an integral function. J. Lond. Math. Soc. 1926, 1, 12–15. [Google Scholar] [CrossRef]
- Taylor, R.; Wiles, A. Ring-theoretic properties of certain Hecke algebra. Ann. Math. 1995, 141, 553–572. [Google Scholar] [CrossRef] [Green Version]
- Wiles, A. Modular elliptic curves and Fermats last theorem. Ann. Math. 1995, 141, 443–551. [Google Scholar] [CrossRef] [Green Version]
- Cao, T.B.; Korhonen, R.J. A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables. J. Math. Anal. Appl. 2016, 444, 1114–1132. [Google Scholar] [CrossRef] [Green Version]
- Chiang, Y.M.; Feng, S.J. On the Nevanlinna characteristic of f(z + η) and difference equations in the complex plane. Ramanujan J. 2008, 16, 105–129. [Google Scholar] [CrossRef]
- Halburd, R.G.; Korhonen, R. Finite-order meromorphic solutions and the discrete Painlevé equations. Proc. London Math. Soc. 2007, 94, 443–474. [Google Scholar] [CrossRef] [Green Version]
- Halburd, R.G.; Korhonen, R.J. Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. 2006, 31, 463–478. [Google Scholar]
- Ronkin, L.I. Introduction to the Theory of Entire Functions of Several Variables; Nauka: Moscow, Russia, 1971; American Mathematical Society: Providence, RI, USA, 1974. (In Russian) [Google Scholar]
- Stoll, W. Holomorphic Functions of Finite Order in Several Complex Variables; American Mathematical Society: Providence, RI, USA, 1974. [Google Scholar]
- Vitter, A. The lemma of the logarithmic derivative in several complex variables. Duke Math. J. 1977, 44, 89–104. [Google Scholar] [CrossRef]
- Cao, T.B.; Xu, L. Logarithmic difference lemma in several complex variables and partial difference equations. Annal. Matem. 2020, 199, 767–794. [Google Scholar] [CrossRef] [Green Version]
- Khavinson, D. A note on entire solutions of the eiconal equation. Am. Math. Mon. 1995, 102, 159–161. [Google Scholar] [CrossRef]
- Li, B.Q. Entire solutions of certain partial differential equations and factorization of partial derivatives. Tran. Amer. Math. Soc. 2004, 357, 3169–3177. [Google Scholar] [CrossRef] [Green Version]
- Li, B.Q. Entire solutions of eiconal type equations. Arch. Math. 2007, 89, 350–357. [Google Scholar] [CrossRef]
- Liu, K.; Laine, I.; Yang, L.Z. Complex Delay-Differential Equations; De Gruyter: Berlin, Germany; Boston, MA, USA, 2021. [Google Scholar]
- Liu, K. Meromorphic functions sharing a set with applications to difference equations. J. Math. Anal. Appl. 2009, 359, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Cao, T.B. Entire solutions of Fermat type difference differential equations. Electron. J. Diff. Equ. 2013, 59, 1–10. [Google Scholar] [CrossRef]
- Liu, K.; Cao, T.B.; Cao, H.Z. Entire solutions of Fermat type differential-difference equations. Arch. Math. 2012, 99, 147–155. [Google Scholar] [CrossRef]
- Han, Q.; Lü, F. On the equation fn(z) + gn(z) = eαz+β. J. Contemp. Math. Anal. 2019, 54, 98–102. [Google Scholar] [CrossRef]
- Liu, M.L.; Gao, L.Y. Transcendental solutions of systems of complex differential-difference equations. Sci. Sin. Math. 2019, 49, 1–22. (In Chinese) [Google Scholar]
- Saleeby, E.G. Entire and meromorphic solutions of Fermat type partial differential equations. Analysis 1999, 19, 69–376. [Google Scholar] [CrossRef]
- Saleeby, E.G. On entire and meromorphic solutions of . Complex Variab. Theor. Appl. Int. J. 2004, 49, 101–107. [Google Scholar] [CrossRef]
- Chang, D.C.; Li, B.Q. Description of entire solutions of Eiconal type equations. Canad. Math. Bull. 2012, 55, 249–259. [Google Scholar] [CrossRef] [Green Version]
- Li, B.Q. Entire solutions of (uz1)m + (uz2)n = eg. Nagoya Math. J. 2005, 178, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Iskenderov, N.S.; Allahverdiyeva, S.I. An inverse boundary value problem for the boussinesq-love equation with nonlocal integral condition. TWMS J. Pure Appl. Math. 2020, 11, 226–237. [Google Scholar]
- Lü, F. Entire solutions of a variation of the Eikonal equation and related PDEs. Proc. Edinb. Math. Soc. 2020, 63, 697–708. [Google Scholar] [CrossRef]
- Lü, F. Meromorphic solutions of generalized inviscid Burgers’ equations and related PDES. C. R. Math. 2020, 358, 1169–1178. [Google Scholar] [CrossRef]
- Lü, F.; Li, Z. Meromorphic solutions of Fermat type partial differential equations. J. Math. Anal. Appl. 2019, 478, 864–873. [Google Scholar] [CrossRef]
- Ozyapici, A.; Karanfiller, T. New integral operator for solution of differential equations. TWMS J. Pure Appl. Math. 2020, 11, 131–143. [Google Scholar]
- Xu, H.Y.; Jiang, Y.Y. Results on entire and meromorphic solutions for several systems of quadratic trinomial functional equations with two complex variables. Rev. Real Acad. Cienc. Exactas Fís. Nat. Serie A Matem. 2022, 116, 1–19. [Google Scholar] [CrossRef]
- Xu, H.Y.; Liu, S.Y.; Li, Q.P. Entire solutions for several systems of nonlinear difference and partial differentialdifference equations of Fermat-type. J. Math. Anal. Appl. 2020, 483, 1–22. [Google Scholar] [CrossRef]
- Xu, H.Y.; Meng, D.W.; Liu, S.Y.; Wang, H. Entire solutions for several second-order partial differentialdifference equations of Fermat type with two complex variables. Adv. Differ. Equ. 2021, 2021, 1–24. [Google Scholar] [CrossRef]
- Xu, H.Y.; Xu, L. Transcendental entire solutions for several quadratic binomial and trinomial PDEs with constant coefficients. Anal. Math. Phys. 2022, 12, 1–21. [Google Scholar] [CrossRef]
- Chen, W.; Han, Q. On entire solutions to eikonal-type equations. J. Math. Anal. Appl. 2020, 506. [Google Scholar] [CrossRef]
- Korhonen, R.J. A difference Picard theorem for meromorphic functions of several variables. Comput. Methods Funct. Theor. 2012, 12, 343–361. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Cao, T.B. Solutions of complex Fermat-type partial difference and differential-difference equations. Mediterr. J. Math. 2018, 15, 1–14, Correction in Mediterr. J. Math. 2020, 17, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Hu, P.C.; Li, P.; Yang, C.C. Unicity of Meromorphic Mappings, Advances in Complex Analysis and Its Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2003; Volume 1. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Xu, L.; Srivastava, H.M. The Exact Solutions for Several Partial Differential-Difference Equations with Constant Coefficients. Mathematics 2022, 10, 3596. https://doi.org/10.3390/math10193596
Xu H, Xu L, Srivastava HM. The Exact Solutions for Several Partial Differential-Difference Equations with Constant Coefficients. Mathematics. 2022; 10(19):3596. https://doi.org/10.3390/math10193596
Chicago/Turabian StyleXu, Hongyan, Ling Xu, and Hari Mohan Srivastava. 2022. "The Exact Solutions for Several Partial Differential-Difference Equations with Constant Coefficients" Mathematics 10, no. 19: 3596. https://doi.org/10.3390/math10193596
APA StyleXu, H., Xu, L., & Srivastava, H. M. (2022). The Exact Solutions for Several Partial Differential-Difference Equations with Constant Coefficients. Mathematics, 10(19), 3596. https://doi.org/10.3390/math10193596