Extended Multi-Step Jarratt-like Schemes of High Order for Equations and Systems
Abstract
:1. Introduction
2. Analysis
- (a)
- so
- (b)
- , CN so that for
- Equation has a simple solution .
- For allSet .
- For all u,
- .
- (i)
- Point γ is a simple solution in of (1) and
- (ii)
3. Applications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amat, S.; Argyros, I.K.; Busquier, S.; Hernández–Verón, M.Á.; Martínez, E. On the local convergence study for an efficient k–step iterative method. JCAM 2018, 343, 753–761. [Google Scholar] [CrossRef]
- Amorós, C.; Argyros, I.K.; González, D.; Magreñán, Á.A.; Regmi, S.; Sarría, Í. New Improvement of the Domain of Parameters for Newton’s Method. Mathematics 2020, 8, 103. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K.; George, S. Mathematical Modeling for the Solution of Equations and Systems of Equations with Applications; Nova Publishers: Hauppauge, NY, USA, 2019; Volume IV. [Google Scholar]
- Argyros, I.K.; González, D.; Magreñán, Á.A.; Moysi, A.; Regmi, S.; Sicilia, J.A. Convergence and Dynamics of a Higher–Order Method. Symmetry 2020, 12, 420. [Google Scholar]
- Argyros, I.K.; Magreñán, Á.A. A Contemporary Study of Iterative Methods; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Frontini, M.; Sormani, E. Some variant of Newton’s method with third–order convergence. Appl. Math. Comput. 2003, 140, 419–426. [Google Scholar] [CrossRef]
- Grau–Sánchez, M.; Grau, Á.; Noguera, M. Ostrowski type methods for solving systems of nonlinear equations. Appl. Math. Comput. 2011, 218, 2377–2385. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Rheinboldt, W.C. An adaptive continuation process for solving systems of nonlinear equations. Pol. Acad. Sci. Banach Ctr. Publ. 1978, 3, 129–142. [Google Scholar] [CrossRef]
- Soleymani, F.; Lotfi, T.; Bakhtiari, P. A multi–step class of iterative methods for nonlinear systems. Optim. Lett. 2014, 8, 1001–1015. [Google Scholar] [CrossRef]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. A modified Newton–Jarratt’s composition. Numer. Algorithms 2010, 55, 87–99. [Google Scholar] [CrossRef]
- Gutiérrez, J.M.; Hernández, M.A. A family of Chebyshev–Halley type methods in Banach spaces. Bull. Aust. Math. Soc. 1997, 55, 113–130. [Google Scholar] [CrossRef] [Green Version]
- Homeier, H.H. A modified Newton method with cubic convergence: The multivariable case. J. Comput. Appl. Math. 2004, 169, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Jarratt, P. Some fourth order multipoint iterative methods for solving equations. Math. Comp. 1966, 20, 434–437. [Google Scholar] [CrossRef]
- Kou, J. A third–order modification of Newton method for systems of nonlinear equations. Appl. Math. Comput. 2007, 191, 117–121. [Google Scholar]
- Petkovic, M.S. On a general class of multipoint root–finding methods of high computational efficiency. SIAM J. Numer. Anal. 2011, 49, 1317–1319. [Google Scholar] [CrossRef]
- Sharma, J.R.; Guha, R.K.; Sharma, R. An efficient fourth order weighted–Newton method for systems of nonlinear equations. Numer. Algorithms 2013, 62, 307–323. [Google Scholar] [CrossRef]
- Ahmad, F.; Tohidi, E.; Ullah, M.Z.; Carrasco, J.A. Higher order multi–step Jarratt–like method for solving systems of nonlinear equations: Application to PDEs and ODEs. Comp. Math. App. 2015, 70, 624–636. [Google Scholar] [CrossRef] [Green Version]
- Kung, H.T.; Traub, J.F. Optimal order of one point and multipoint iteration. J. AMC 1974, 21, 643–651. [Google Scholar] [CrossRef]
- Ignatova, B.; Kyurkchiev, N.; Iliev, A. Multipoint Algorithms Arising from Optimal in the Sense of Kung–Traub Iterative Procedures for Numerical Solution of Nonlinear Equations. Gen. Math. Notes 2011, 6, 45–79. [Google Scholar]
- Danby, J.M.A.; Burkardt, T.M. The solution of Kepler’s equation, I. Celest. Mech. 1983, 31, 95–107. [Google Scholar] [CrossRef]
0.306688… | 1 | 0.666667… | 0.343549… | 0.306688… |
0.024324… | 0.133333… | 0.088888… | 0.032839… | 0.024324… |
0.115169… | 0.581977… | 0.382692… | 0.148762… | 0.115169… |
0.003149… | 0.010345… | 0.006896… | 0.003463… | 0.003149… |
0.550956… | 2.713050… | 1.808700… | 0.720969… | 0.550956… |
0.391641… | 0.775990… | 0.484339… | 0.413569… | 0.391641… |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argyros, I.K.; Argyros, C.; Argyros, M.; Ceballos, J.; González, D. Extended Multi-Step Jarratt-like Schemes of High Order for Equations and Systems. Mathematics 2022, 10, 3603. https://doi.org/10.3390/math10193603
Argyros IK, Argyros C, Argyros M, Ceballos J, González D. Extended Multi-Step Jarratt-like Schemes of High Order for Equations and Systems. Mathematics. 2022; 10(19):3603. https://doi.org/10.3390/math10193603
Chicago/Turabian StyleArgyros, Ioannis K., Chirstopher Argyros, Michael Argyros, Johan Ceballos, and Daniel González. 2022. "Extended Multi-Step Jarratt-like Schemes of High Order for Equations and Systems" Mathematics 10, no. 19: 3603. https://doi.org/10.3390/math10193603
APA StyleArgyros, I. K., Argyros, C., Argyros, M., Ceballos, J., & González, D. (2022). Extended Multi-Step Jarratt-like Schemes of High Order for Equations and Systems. Mathematics, 10(19), 3603. https://doi.org/10.3390/math10193603