Machine Learning Models for Predicting Romanian Farmers’ Purchase of Crop Insurance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
2.1.1. Predictors
2.1.2. Target Variable
2.2. Data Processing
2.3. Model Development
2.3.1. Baseline Model
2.3.2. Logistic Regression (LR)
2.3.3. Decision Tree Classifier (DT)
2.3.4. Tree-Based Models
2.3.5. Multi-Layer Perceptron Classifier (MLP)
2.3.6. Model Implementation
3. Results and Discussions
3.1. Model Evaluation
3.2. Feature Importance from Ensemble Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm | Parameters |
---|---|
LR | C=1, max_iter = 5000, random_state = 42, solver = ’newton-cg’ |
DT | max_depth = 10, max_features = ’sqrt’, min_samples_leaf = 5, random_state = 42 |
RFC | max_depth = 8, max_features = ’sqrt’, n_estimators = 500, random_state = 42 |
XGB | colsample_bytree=0.4, gamma = 2, max_depth = 2, min_child_weight = 5, random_state = 42, subsample = 0.6 |
SVC | C = 5, loss = ’hinge’, max_iter = 20000, random_state = 42, tol = 0.01 |
MLP | alpha = 0.01, number_neurons = 100, activation = ’relu’, learning_rate_init = 0.01, random_state = 42 |
Appendix B
References
- European Parliament. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20211118STO17609/eu-agriculture-statistics-subsidies-jobs-production-infographic (accessed on 17 May 2022).
- Wang, Y.; Xu, W. Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decis. Support Syst. 2018, 105, 87–95. [Google Scholar] [CrossRef]
- Waghade, S.S.; Karandikar, A.M. A comprehensive study of healthcare fraud detection based on machine learning. Int. J. Appl. Eng. Res. 2018, 13, 4175–4178. [Google Scholar]
- Rukhsar, L.; Bangyal, W.H.; Nisar, K.; Nisar, S. Prediction of insurance fraud detection using machine learning algorithms. Mehran Univ. Res. J. Eng. Technol. 2022, 41, 33–40. [Google Scholar] [CrossRef]
- Nguyen, K.A.T.; Nguyen, T.A.T.; Nguelifack, B.M.; Jolly, C.M. Machine Learning Approaches for Predicting Willingness to Pay for Shrimp Insurance in Vietnam. Mar. Resour. Econ. 2022, 37, 155–182. [Google Scholar] [CrossRef]
- Biddle, R.; Liu, S.; Tilocca, P.; Xu, G. Automated underwriting in life insurance: Predictions and optimisation. In Proceedings of the Australasian Database Conference, Brisbane, Australia, 14–16 July 2018; pp. 135–146. [Google Scholar]
- Hanafy, M.; Ming, R. Classification of the Insureds Using Integrated Machine Learning Algorithms: A Comparative Study. In Applied Artificial Intelligence; Taylor & Francis: Abingdon, UK, 2022; pp. 1–32. [Google Scholar]
- Boodhun, N.; Jayabalan, M. Risk prediction in life insurance industry using supervised learning algorithms. Complex Intell. Syst. 2018, 4, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Gopagoni, D.R.; Lakshmi, P.; Siripurapu, P. Predicting the Sales Conversion Rate of Car Insurance Promotional Calls. In Rising Threats in Expert Applications and Solutions; Springer: Berlin/Heidelberg, Germany, 2021; pp. 321–329. [Google Scholar]
- Groll, A.; Wasserfuhr, C.; Zeldin, L. Churn modeling of life insurance policies via statistical and machine learning methods—Analysis of important features. arXiv 2022, arXiv:2202.09182. [Google Scholar]
- Henckaerts, R.; Côté, M.P.; Antonio, K.; Verbelen, R. Boosting insights in insurance tariff plans with tree-based machine learning methods. N. Am. Actuar. J. 2021, 25, 255–285. [Google Scholar] [CrossRef]
- Yang, W.; Sun, S.; Hao, Y.; Wang, S. A novel machine learning-based electricity price forecasting model based on optimal model selection strategy. Energy 2022, 238, 121989. [Google Scholar] [CrossRef]
- Li, T.; Qian, Z.; Deng, W.; Zhang, D.; Lu, H.; Wang, S. Forecasting crude oil prices based on variational mode decomposition and random sparse Bayesian learning. Appl. Soft Comput. 2021, 113, 108032. [Google Scholar] [CrossRef]
- Lin, B.; Wang, T. Forecasting natural gas supply in China: Production peak and import trends. Energy Policy 2012, 49, 225–233. [Google Scholar] [CrossRef]
- Devyatkin, D.; Otmakhova, Y. Methods for Mid-Term Forecasting of Crop Export and Production. Appl. Sci. 2021, 11, 10973. [Google Scholar] [CrossRef]
- Pabuçcu, H.; Ongan, S.; Ongan, A. Forecasting the movements of Bitcoin prices: An application of machine learning algorithms. Quant. Financ. Econ. 2020, 4, 679–692. [Google Scholar] [CrossRef]
- Hanafy, M.; Ming, R. Machine learning approaches for auto insurance big data. Risks 2021, 9, 42. [Google Scholar] [CrossRef]
- Maillart, A. Toward an explainable machine learning model for claim frequency: A use case in car insurance pricing with telematics data. Eur. Actuar. J. 2021, 11, 579–617. [Google Scholar] [CrossRef]
- Dimri, A.; Paul, A.; Girish, D.; Lee, P.; Afra, S.; Jakubowski, A. A multi-input multi-label claims channeling system using insurance-based language models. Expert Syst. Appl. 2022, 202, 117166. [Google Scholar] [CrossRef]
- Kose, I.; Gokturk, M.; Kilic, K. An interactive machine-learning-based electronic fraud and abuse detection system in healthcare insurance. Appl. Soft Comput. 2015, 36, 283–299. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Su, C.C.; Shao, S.C.; Sung, S.F.; Lin, S.J.; Yang, Y.H.K.; Lai, E.C.C. Taiwan’s national health insurance research database: Past and future. Clin. Epidemiol. 2019, 11, 349. [Google Scholar] [CrossRef] [Green Version]
- Mitrova, H.; Madevska Bogdanova, A. Models for Detecting Frauds in Medical Insurance. In Proceedings of the International Conference on ICT Innovations, Skopje, Macedonia, 29 September–1 October 2022; pp. 55–67. [Google Scholar]
- Azzone, M.; Barucci, E.; Moncayo, G.G.; Marazzina, D. A machine learning model for lapse prediction in life insurance contracts. Expert Syst. Appl. 2022, 191, 116261. [Google Scholar] [CrossRef]
- Wei, C.; Dan, L. Market fluctuation and agricultural insurance forecasting model based on machine learning algorithm of parameter optimization. J. Intell. Fuzzy Syst. 2019, 37, 6217–6228. [Google Scholar] [CrossRef]
- Van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Wu, W.; Wu, X.; Zhang, Y.Y.; Leatham, D. Gaussian process modeling of nonstationary crop yield distributions with applications to crop insurance. Agric. Financ. Rev. 2021, 81, 767–783. [Google Scholar] [CrossRef]
- Olila, D.O.; Pambo, K.O. Determinants of farmers’ awareness about crop insurance: Evidence from Trans-Nzoia County, Kenya. In Proceedings of the 8th Annual Egerton University International, 26–28 March 2014. [Google Scholar]
- Gulseven, O. Estimating the demand factors and willingness to pay for agricultural insurance. arXiv 2020, arXiv:2004.11279. [Google Scholar]
- Sihem, E. Economic and socio-cultural determinants of agricultural insurance demand across countries. J. Saudi Soc. Agric. Sci. 2019, 18, 177–187. [Google Scholar] [CrossRef]
- Skees, J. Rethinking the role of index insurance: Accessing markets for the poor. In Proceedings of the AAAE/AEASA Conference, Westin Grand Hotel, Cape Town, South Africa, 19–23 September 2010; Volume 22. [Google Scholar]
- Hill, R.V.; Hoddinott, J.; Kumar, N. Adoption of weather-index insurance: Learning from willingness to pay among a panel of households in rural Ethiopia. Agric. Econ. 2013, 44, 385–398. [Google Scholar] [CrossRef] [Green Version]
- Binswanger-Mkhize, H.P. Is there too much hype about index-based agricultural insurance? J. Dev. Stud. 2012, 48, 187–200. [Google Scholar] [CrossRef]
- Ghahari, A.; Newlands, N.K.; Lyubchich, V.; Gel, Y.R. Deep learning at the interface of agricultural insurance risk and spatio-temporal uncertainty in weather extremes. N. Am. Actuar. J. 2019, 23, 535–550. [Google Scholar] [CrossRef]
- Enjolras, G.; Capitanio, F.; Adinolfi, F. The demand for crop insurance: Combined approaches for France and Italy. Agric. Econ. Rev. 2012, 13, 5–22. [Google Scholar]
- Carrer, M.J.; Silveira, R.L.F.d.; Vinholis, M.d.M.B.; De Souza Filho, H.M. Determinants of agricultural insurance adoption: Evidence from farmers in the state of São Paulo, Brazil. RAUSP Manag. J. 2021, 55, 547–566. [Google Scholar] [CrossRef]
- Lefebvre, M.; Nikolov, D.; Gomez-y Paloma, S.; Chopeva, M. Determinants of insurance adoption among Bulgarian farmers. Agric. Financ. Rev. 2014, 74, 326–347. [Google Scholar] [CrossRef]
- Enjolras, G.; Sentis, P. Crop insurance policies and purchases in France. Agric. Econ. 2011, 42, 475–486. [Google Scholar] [CrossRef]
- Garrido, A.; Zilberman, D. Revisiting the demand of agricultural insurance: The case of Spain. Agric. Financ. Rev. 2008, 68, 43–66. [Google Scholar] [CrossRef] [Green Version]
- Zubor-Nemes, A.; Fogarasi, J.; Molnár, A.; Kemény, G. Farmers’ responses to the changes in Hungarian agricultural insurance system. Agric. Financ. Rev. 2018, 78, 275–288. [Google Scholar] [CrossRef]
- Trestini, S.; Giampietri, E.; Smiglak-Krajewska, M. Farmer behaviour towards the agricultural risk management tools provided by the CAP: A comparison between Italy and Poland. In Proceedings of the 162nd EAAE Seminar, Budapest, Hungary, 26–27 April 2018. [Google Scholar]
- Iyer, P.; Bozzola, M.; Hirsch, S.; Meraner, M.; Finger, R. Measuring farmer risk preferences in Europe: A systematic review. J. Agric. Econ. 2020, 71, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Menapace, L.; Colson, G.; Raffaelli, R. A comparison of hypothetical risk attitude elicitation instruments for explaining farmer crop insurance purchases. Eur. Rev. Agric. Econ. 2016, 43, 113–135. [Google Scholar] [CrossRef]
- Dragos, S.L.; Mare, C. An econometric approach to factors affecting crop insurance in Romania. Econ. Manag. 2014, 17, 93–103. [Google Scholar] [CrossRef]
- Goedde-Menke, M.; Lehmensiek-Starke, M.; Nolte, S. An empirical test of competing hypotheses for the annuity puzzle. J. Econ. Psychol. 2014, 43, 75–91. [Google Scholar] [CrossRef]
- Dragos, S.L.; Dragos, C.M.; Muresan, G.M. From intention to decision in purchasing life insurance and private pensions: Different effects of knowledge and behavioural factors. J. Behav. Exp. Econ. 2020, 87, 101555. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Farms_and_farmland_in_the_European_Union_-_statistics#Farms_in_2016 (accessed on 16 May 2022).
- Ryman-Tubb, N.F.; Krause, P.; Garn, W. How Artificial Intelligence and machine learning research impacts payment card fraud detection: A survey and industry benchmark. Eng. Appl. Artif. Intell. 2018, 76, 130–157. [Google Scholar] [CrossRef]
- Rahimikia, E.; Mohammadi, S.; Rahmani, T.; Ghazanfari, M. Detecting corporate tax evasion using a hybrid intelligent system: A case study of Iran. Int. J. Account. Inf. Syst. 2017, 25, 1–17. [Google Scholar] [CrossRef]
- Sherrick, B.J.; Barry, P.J.; Ellinger, P.N.; Schnitkey, G.D. Factors influencing farmers’ crop insurance decisions. Am. J. Agric. Econ. 2004, 86, 103–114. [Google Scholar] [CrossRef]
- Fahad, S.; Wang, J.; Hu, G.; Wang, H.; Yang, X.; Shah, A.A.; Huong, N.T.L.; Bilal, A. Empirical analysis of factors influencing farmers crop insurance decisions in Pakistan: Evidence from Khyber Pakhtunkhwa province. Land Use Policy 2018, 75, 459–467. [Google Scholar] [CrossRef]
- Deressa, T.T.; Ringler, C.; Hassan, R.M. Factors Affecting the Choices of Coping Strategies for Climate Extremes. The Case of Farmers in the Nile Basin of Ethiopia; IFPRI Discussion Paper; International Food Policy Research Institute: Washington, DC, USA, 2010; Volume 1032. [Google Scholar]
- Okoffo, E.D.; Denkyirah, E.K.; Adu, D.T.; Fosu-Mensah, B.Y. A double-hurdle model estimation of cocoa farmers’ willingness to pay for crop insurance in Ghana. SpringerPlus 2016, 5, 873. [Google Scholar] [CrossRef]
Predictors | ||
---|---|---|
Crop-level | principal crop type (CROP_TYPE_FIELD, CROP_TYPE_VEGETABLE, CROP_TYPE_TREEVINE, CROP_TYPE_OTHERS), region (CROP_REGION), area under cultivation (CROP_AREA), past experience with damage caused by natural calamities (CROP_CALAM) | |
socio-demographic attributes | AGE, residence (RURAL), education (EDUC), marital status (MARRIED), level of income (INCOME), percent of income attributed to agricultural activities (PERC_INCOME) | |
Farmer-level | farmer-insurance attributes | past experience with and trust in insurance companies (INS_EXP, INS_TRUST), knowledge about agricultural insurance (INS_EDUC) |
farmer-risk-aversion attributes | perceived risk of losing the crop (RISK_PERCEPTION_CROP), perception about ratio between the value of the total premium and the amount of risk to which the farm is exposed (RISK_OVEREVAL), perceived risk of various activities (RISK_PERCEPTION_GENERAL), likelihood of engaging in risky behavior (RISK_BEHAVIOUR) |
Target | Value | Count |
---|---|---|
owns crop insurance | yes | 298 (41.3%) |
no | 423 (58.7%) |
Algorithm | Accuracy | F1 Score Class 0 | F1 Score Class 1 | Precision Class 1 | Recall Class 1 | AUROC |
---|---|---|---|---|---|---|
Baseline | 0.57 | 0.72 | 0.00 | 0.00 | 0.00 | 0.50 |
LR | 0.72 | 0.76 | 0.67 | 0.69 | 0.65 | 0.83 |
DT | 0.66 | 0.71 | 0.60 | 0.62 | 0.57 | 0.73 |
RFC | 0.70 | 0.77 | 0.60 | 0.73 | 0.51 | 0.82 |
XGB | 0.71 | 0.76 | 0.63 | 0.71 | 0.56 | 0.80 |
SVC | 0.74 | 0.78 | 0.69 | 0.73 | 0.65 | 0.83 |
MLP | 0.76 | 0.79 | 0.72 | 0.72 | 0.73 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mare, C.; Manaţe, D.; Mureşan, G.-M.; Dragoş, S.L.; Dragoş, C.M.; Purcel, A.-A. Machine Learning Models for Predicting Romanian Farmers’ Purchase of Crop Insurance. Mathematics 2022, 10, 3625. https://doi.org/10.3390/math10193625
Mare C, Manaţe D, Mureşan G-M, Dragoş SL, Dragoş CM, Purcel A-A. Machine Learning Models for Predicting Romanian Farmers’ Purchase of Crop Insurance. Mathematics. 2022; 10(19):3625. https://doi.org/10.3390/math10193625
Chicago/Turabian StyleMare, Codruţa, Daniela Manaţe, Gabriela-Mihaela Mureşan, Simona Laura Dragoş, Cristian Mihai Dragoş, and Alexandra-Anca Purcel. 2022. "Machine Learning Models for Predicting Romanian Farmers’ Purchase of Crop Insurance" Mathematics 10, no. 19: 3625. https://doi.org/10.3390/math10193625
APA StyleMare, C., Manaţe, D., Mureşan, G. -M., Dragoş, S. L., Dragoş, C. M., & Purcel, A. -A. (2022). Machine Learning Models for Predicting Romanian Farmers’ Purchase of Crop Insurance. Mathematics, 10(19), 3625. https://doi.org/10.3390/math10193625