Fast Method Based on Fuzzy Logic for Gaussian-Impulsive Noise Reduction in CT Medical Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Impulsive Noise Removal
- First Step: If is higher than a parameter , then x is marked as impulse-free.
- -
- If is less than , a parameter satisfying , x is marked as impulsive.
- -
- If x fulfills x is not classified at this stage, and it is studied in a second stage.
- Second Step: Another parameter, , is utilized. is calculated on , excluding the pixels previously classified as impulses, and utilizing a parameter . If then x is classified as non-impulsive. Otherwise, x is classified as impulse.
2.2. Gaussian Noise Removal
2.3. Parallel Fuzzy Filter
Algorithm 1 Parallel Fuzzy Filter. |
Require: Noisy image , domain decomposition , Parameters Ensure: Denoised image. for , in parallel do Impulses detection: First Step for x in do Compute: ; if () then x is classified as non-impulsive; else if () then x is classified as impulse; else x is classified as non-diagnosed; end if end if end for Impulses detection: Second Step for x in non-diagnosed at first Step do Compute excluding pixels classified as impulsive; if () then x is classified as non-impulsive; else x is classified as impulse; end if end for Impulsive Noise Removal: for x in labeled as impulsive do x is substituted by over noisy-free pixels; end for Gaussian Noise Removal: for x in do Compute , the better number of components in end for end for |
3. Results
3.1. Denoising Performance
3.2. Computational Efficiency
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalra, M.K.; Wittram, C.; Maher, M.M.; Sharma, A.; Avinash, G.B.; Karau, K.; Toth, T.L.; Halpern, E.; Saini, S.; Shepard, J.A. Can Noise Reduction Filters Improve Low-Radiation-Dose Chest CT Images Pilot Study. Radiology 2003, 228, 257–264. [Google Scholar] [CrossRef]
- Kalra, M.K.; Maher, M.M.; Blake, M.A.; Lucey, B.C.; Karau, K.; Toth, T.L.; Avinash, G.; Halpern, E.F.; Saini, S. Detection and Characterization of Lesions on Low-Radiation-Dose Abdominal CT Images Postprocessed with Noise Reduction Filters. Radiology 2004, 232, 791–797. [Google Scholar] [CrossRef]
- Kumar, M.; Tounsi, Y.; Kaur, K.; Nassim, A.; Mandoza-Santoyo, F.; Matoba, O. Speckle denoising techniques in imaging systems. J. Opt. 2020, 22, 063001. [Google Scholar] [CrossRef]
- Plataniotis, K.; Venetsanopoulos, A.N. Color Image Processing and Applications; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Boncelet, C. 4.5—Image Noise Models. In Handbook of Image and Video Processing, 2nd ed.; Bovik, A., Ed.; Communications, Networking and Multimedia; Academic Press: Burlington, MA, USA, 2005; pp. 397–409. [Google Scholar]
- Lin, M.H.; Hou, Z.X.; Cheng, K.H.; Wu, C.H.; Peng, Y.T. Image Denoising Using Adaptive and Overlapped Average Filtering and Mixed-Pooling Attention Refinement Networks. Mathematics 2021, 9, 1130. [Google Scholar] [CrossRef]
- Radlak, K.; Malinski, L.; Smolka, B. Deep Learning Based Switching Filter for Impulsive Noise Removal in Color Images. Sensors 2020, 20, 2782. [Google Scholar] [CrossRef] [PubMed]
- Smolka, B. Peer group switching filter for impulse noise reduction in color images. Pattern Recognit. Lett. 2010, 31, 484–495. [Google Scholar] [CrossRef]
- Camarena, J.G.; Gregori, V.; Morillas, S.; Sapena, A. Fast detection and removal of impulsive noise using peer groups and fuzzy metrics. J. Vis. Commun. Image Represent. 2008, 19, 20–29. [Google Scholar] [CrossRef]
- Toprak, A.; Güler, I. Impulse noise reduction in medical images with the use of switch mode fuzzy adaptive median filter. Digit. Signal Process. 2007, 17, 711–723. [Google Scholar] [CrossRef]
- Schulte, S.; Nachtegael, M.; Witte, V.D.; der Weken, D.V.; Kerre, E.E. A fuzzy impulse noise detection and reduction method. IEEE Trans. Image Process. 2006, 15, 1153–1162. [Google Scholar] [CrossRef]
- Schulte, S.; Morillas, S.; Gregori, V.; Kerre, E.E. A New Fuzzy Color Correlated Impulse Noise Reduction Method. IEEE Trans. Image Process. 2007, 16, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Mélange, T.; Nachtegael, M.; Kerre, E.E. Fuzzy Random Impulse Noise Removal From Color Image Sequences. IEEE Trans. Image Process. 2011, 20, 20–22. [Google Scholar] [CrossRef]
- Camarena, J.G.; Gregori, V.; Morillas, S.; Sapena, A. Two-step fuzzy logic-based method for impulse noise detection in colour images. Pattern Recognit. Lett. 2010, 31, 1842–1849. [Google Scholar] [CrossRef]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), Bombay, India, 4–7 January 1998; IEEE Computer Society: Washington, DC, USA, 1998; pp. 839–846. [Google Scholar]
- Li, X. On modeling interchannel dependency for color image denoising. Int. J. Imaging Syst. Technol. 2007, 17, 163–173. [Google Scholar] [CrossRef]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. Trans. Img. Proc. 2007, 16, 2080–2095. [Google Scholar] [CrossRef]
- Kong, X.; Zhao, Y.; Xue, J.; Chan, J.C.W. Hyperspectral Image Denoising Using Global Weighted Tensor Norm Minimum and Nonlocal Low-Rank Approximation. Remote Sens. 2019, 11, 2281. [Google Scholar] [CrossRef] [Green Version]
- Arnal, J.; Súcar, L. Hybrid Filter Based on Fuzzy Techniques for Mixed Noise Reduction in Color Images. Appl. Sci. 2020, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Morillas, S.; Gregori, V.; Hervás, A. Fuzzy peer groups for reducing mixed Gaussian-impulse noise from color images. IEEE Trans. Image Process. 2009, 18, 1452–1466. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Li, K.; Li, K. Reporting l most influential objects in uncertain databases based on probabilistic reverse top-k queries. Inf. Sci. 2017, 405, 207–226. [Google Scholar] [CrossRef]
- Xiao, G.; Li, K.; Li, K.; Zhou, X. Efficient top-(k, l) range query processing for uncertain data based on multicore architectures. Distrib. Parallel Databases 2015, 33, 381–413. [Google Scholar] [CrossRef]
- Xiao, G.; Li, K.; Li, K. Reporting l most favorite objects in uncertain databases with probabilistic reverse top-k queries. In Proceedings of the 2015 IEEE International Conference on Data Mining Workshop (ICDMW), Atlantic City, NJ, USA, 14–17 November 2015; pp. 1592–1599. [Google Scholar]
- Chen, Y.; Li, K.; Yang, W.; Xiao, G.; Xie, X.; Li, T. Performance-Aware Model for Sparse Matrix-Matrix Multiplication on the Sunway TaihuLight Supercomputer. IEEE Trans. Parallel Distrib. Syst. 2018, 30, 923–938. [Google Scholar] [CrossRef]
- Liu, C.; Li, K.; Xu, C.; Li, K. Strategy Configurations of Multiple Users Competition for Cloud Service Reservation. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 508–520. [Google Scholar] [CrossRef]
- Li, K.; Liu, C.; Li, K.; Zomaya, A.Y. A framework of price bidding configurations for resource usage in cloud computing. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 2168–2181. [Google Scholar] [CrossRef]
- Wong, K.K.; Fong, S.; Wang, D. Impact of advanced parallel or cloud computing technologies for image guided diagnosis and therapy. J. X-Ray Sci. Technol. 2017, 25, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Dagum, L.; Menon, R. OpenMP: An industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 1998, 5, 46–55. [Google Scholar] [CrossRef] [Green Version]
- OpenMP ARB. Available online: https://www.openmp.org (accessed on 8 September 2022).
- McCollough, C.; Chen, B.; Holmes, D.; Duan, X.; Yu, Z.; Xu, L.; Leng, S.; Fletcher, J. Low dose CT image and projection data (LDCT-and-Projection-data) (Version 4). Med. Phys. 2021, 48, 902–911. [Google Scholar] [CrossRef]
- Coupé, P.; Yger, P.; Prima, S.; Hellier, P.; Kervrann, C.; Barillot, C. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imag. 2008, 27, 425–441. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Arnal, J.; Mayzel, I. Parallel techniques for speckle noise reduction in medical ultrasound images. Adv. Eng. Softw. 2020, 148, 102867. [Google Scholar] [CrossRef]
- Adler, D.C.; Ko, T.H.; Fujimoto, J.G. Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt. Lett. 2004, 29, 2878–2880. [Google Scholar] [CrossRef] [PubMed]
- Garnett, R.; Huegerich, T.; Chui, C.; He, W. A universal noise removal algorithm with an impulse detector. IEEE Trans. Image Process. 2005, 14, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Morillas, S.; Gregori, V.; Peris-Fajarnés, G.; Latorre, P. A fast impulsive noise color image filter using fuzzy metrics. Real-Time Imaging 2005, 11, 417–428. [Google Scholar] [CrossRef]
- Lukac, R.; Plataniotis, K.N. A Taxonomy of Color Image Filtering and Enhancement Solutions. Adv. Imaging Electron. Phys. 2006, 140, 187–264. [Google Scholar]
- Kenney, C.; Deng, Y.; Manjunath, B.S.; Hewer, G. Peer group image enhancement. IEEE Trans. Image Process. 2001, 10, 326–334. [Google Scholar] [CrossRef]
- Gregori, V.; Miñana, J.J.; Sapena, A. Completable fuzzy metric spaces. Topol. Appl. 2017, 225, 103–111. [Google Scholar] [CrossRef]
- Morillas, S.; Gregori, V.; Peris-Fajarnés, G. Isolating impulsive noise pixels in color images by peer group techniques. Comput. Vis. Image Underst. 2008, 110, 102–116. [Google Scholar] [CrossRef]
- Esakkirajan, S.; Veerakumar, T.; Subramanyam, A.N.; PremChand, C. Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. IEEE Signal Process. Lett. 2011, 18, 287–290. [Google Scholar] [CrossRef]
- Smolka, B.; Plataniotis, K.N.; Chydzinski, A.; Szczepanski, M.; Venetsanopoulos, A.N.; Wojciechowski, K. Self-adaptive algorithm of impulsive noise reduction in color images. Pattern Recognit. 2002, 35, 1771–1784. [Google Scholar] [CrossRef]
- Shin, D.H.; Park, R.H.; Yang, S.; Jung, J.H. Block-based noise estimation using adaptive Gaussian filtering. IEEE Trans. Consum. Electron. 2005, 51, 218–226. [Google Scholar] [CrossRef]
- Camarena, J.G.; Gregori, V.; Morillas, S.; Sapena, A. A simple fuzzy method to remove mixed Gaussian-impulsive noise from color images. IEEE Trans. Fuzzy Syst. 2013, 21, 971–978. [Google Scholar] [CrossRef] [Green Version]
- Arnal, J.; Pérez, J.B.; Vidal, V. A Parallel Fuzzy Method to Reduce Mixed Gaussian-Impulsive Noise in CT Medical Images. In Proceedings of the International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, Kunming, China, 20–22 July 2019; Springer: Cham, Switzerland, 2019; pp. 975–982. [Google Scholar]
- Smolka, B.; Kusnik, D. Robust local similarity filter for the reduction of mixed Gaussian and impulsive noise in color digital images. Signal Image Video Process. 2015, 9, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Arnal, J.; Chillarón, M.; Parcero, E.; Súcar, L.B.; Vidal, V. A parallel fuzzy algorithm for real-time medical image enhancement. Int. J. Fuzzy Syst. 2020, 22, 2599–2612. [Google Scholar] [CrossRef]
Noise | MAE | |||||
---|---|---|---|---|---|---|
Gaussian | Impulsive | Noisy | RLSF | SFRF | FPGA | New Filter |
Axial view | ||||||
19.23 | 8.31 | 5.78 | 6.29 | 5.47 | ||
31.83 | 13.99 | 9.27 | 9.30 | 6.59 | ||
44.20 | 21.23 | 13.95 | 16.41 | 8.18 | ||
Coronal view | ||||||
18.62 | 8.55 | 5.93 | 5.82 | 5.34 | ||
31.68 | 14.03 | 9.41 | 9.54 | 7.15 | ||
44.04 | 21.07 | 14.10 | 16.73 | 9.22 | ||
Sagittal view | ||||||
18.85 | 8.82 | 5.93 | 5.80 | 5.44 | ||
32.12 | 14.85 | 9.54 | 9.61 | 6.94 | ||
44.65 | 22.45 | 14.46 | 17.11 | 8.61 |
Noise | PSNR | |||||
---|---|---|---|---|---|---|
Gaussian | Impulsive | Noisy | RLSF | SFRF | FPGA | New Filter |
Axial view | ||||||
15.82 | 28.08 | 30.89 | 29.75 | 31.30 | ||
12.87 | 23.60 | 27.22 | 26.36 | 29.58 | ||
11.13 | 19.95 | 23.74 | 21.28 | 27.35 | ||
Coronal view | ||||||
15.99 | 27.20 | 29.88 | 29.17 | 31.11 | ||
12.97 | 23.28 | 26.56 | 25.68 | 28.22 | ||
11.17 | 19.86 | 23.30 | 20.95 | 26.17 | ||
Sagittal view | ||||||
15.71 | 27.23 | 30.24 | 29.78 | 31.16 | ||
12.72 | 23.07 | 26.71 | 25.84 | 28.54 | ||
10.93 | 19.59 | 23.33 | 20.70 | 26.63 |
Noise | MSSIM | |||||
---|---|---|---|---|---|---|
Gaussian | Impulsive | Noisy | RLSF | SFRF | FPGA | New Filter |
Axial view | ||||||
0.1077 | 0.5048 | 0.5499 | 0.5412 | 0.5600 | ||
0.0534 | 0.4628 | 0.4769 | 0.4299 | 0.5225 | ||
0.0345 | 0.4146 | 0.4405 | 0.2716 | 0.4816 | ||
Coronal view | ||||||
0.1349 | 0.6098 | 0.6469 | 0.6531 | 0.6532 | ||
0.0709 | 0.5623 | 0.5794 | 0.5119 | 0.6036 | ||
0.0472 | 0.5002 | 0.5421 | 0.3241 | 0.5441 | ||
Sagittal view | ||||||
0.1113 | 0.4919 | 0.5429 | 0.5534 | 0.5545 | ||
0.0583 | 0.4463 | 0.4703 | 0.4179 | 0.5063 | ||
0.0390 | 0.3977 | 0.4345 | 0.2619 | 0.4678 |
Noise | IEF | |||||
---|---|---|---|---|---|---|
Gaussian | Impulsive | Noisy | RLSF | SFRF | FPGA | New Filter |
Axial view | ||||||
1 | 16.84 | 32.15 | 25.28 | 35.36 | ||
1 | 11.83 | 27.23 | 22.84 | 46.60 | ||
1 | 7.71 | 18.45 | 10.48 | 42.38 | ||
Coronal view | ||||||
1 | 13.21 | 24.48 | 20.77 | 32.49 | ||
1 | 10.73 | 22.84 | 18.66 | 33.30 | ||
1 | 7.40 | 16.33 | 9.51 | 31.60 | ||
Sagittal view | ||||||
1 | 14.18 | 28.38 | 25.51 | 35.08 | ||
1 | 10.84 | 25.09 | 20.53 | 38.18 | ||
1 | 7.33 | 17.36 | 9.49 | 37.11 |
Method | SNR (dB) | CNR (dB) | ENL |
---|---|---|---|
LDCT image 1 | |||
Noisy | 22.9282 | 8.2222 | 10.0281 |
RLSF | 33.3576 | 18.6606 | 21.0721 |
SFRF | 34.9700 | 20.6087 | 22.8512 |
FPGA | 34.5917 | 19.8566 | 22.1175 |
New filter | 35.9049 | 21.4057 | 23.6885 |
LDCT image 2 | |||
Noisy | 20.4850 | 6.0844 | 5.2926 |
RLSF | 32.7105 | 19.6692 | 14.2302 |
SFRF | 33.9070 | 20.5045 | 15.7191 |
FPGA | 33.6989 | 19.9728 | 15.2304 |
New filter | 34.1144 | 21.0848 | 16.1316 |
LDCT image 3 | |||
Noisy | 20.6764 | 6.4583 | 6.0984 |
RLSF | 31.3755 | 17.6572 | 13.4903 |
SFRF | 33.6482 | 19.1170 | 15.0607 |
FPGA | 33.0195 | 18.9262 | 14.2957 |
New filter | 34.9407 | 20.4838 | 15.9328 |
Noise | Time (seconds) | |||
---|---|---|---|---|
Brain CT images | ||||
Gaussian Noise | Impulsive Noise | Axial view | Coronal view | Sagittal view |
0.0873 | 0.0870 | 0.0793 | ||
0.0877 | 0.0871 | 0.0811 | ||
0.0886 | 0.0885 | 0.0813 | ||
Low-dose abdominal CT images | ||||
Images obtained with quarter-dose exposure | LDCT 1 | LDCT 2 | LDCT 2 | |
0.0429 | 0.0460 | 0.0405 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnal, J.; Súcar, L. Fast Method Based on Fuzzy Logic for Gaussian-Impulsive Noise Reduction in CT Medical Images. Mathematics 2022, 10, 3652. https://doi.org/10.3390/math10193652
Arnal J, Súcar L. Fast Method Based on Fuzzy Logic for Gaussian-Impulsive Noise Reduction in CT Medical Images. Mathematics. 2022; 10(19):3652. https://doi.org/10.3390/math10193652
Chicago/Turabian StyleArnal, Josep, and Luis Súcar. 2022. "Fast Method Based on Fuzzy Logic for Gaussian-Impulsive Noise Reduction in CT Medical Images" Mathematics 10, no. 19: 3652. https://doi.org/10.3390/math10193652
APA StyleArnal, J., & Súcar, L. (2022). Fast Method Based on Fuzzy Logic for Gaussian-Impulsive Noise Reduction in CT Medical Images. Mathematics, 10(19), 3652. https://doi.org/10.3390/math10193652