Multivalue Collocation Methods for Ordinary and Fractional Differential Equations
Abstract
:1. Introduction
- Firstly, the case of stiff differential problems [1,2,3,37,38], commonly arising from spatially discretized time-dependent partial differential equations. This problem commonly exposes numerical schemes to the order reduction phenomena, typically characterizing low stage-order methods such as Runge–Kutta methods on Gaussian collocation points [1]. It is worth highlighting that improving the numerics for stiff problems has a direct impact on the numerical treatment of a wide class of problems that is interesting in several applications. A relevant case is given, for instance, by multiscale problems: Quoting from [39], “Stiff equations are multiscale problems” and this situation typically characterizes coupled physical systems whose components vary on different time-scales. It is the case, for instance, of epidemiological models for influenza or pandemics (see, for instance, refs. [40,41,42] and references therein), since multiscale models are an ideal framework to simultaneously simulate several processes such as immune response, pharmacokinetics, and interactions between virus and host.Our proposal to remove order reduction in providing approximate solutions to stiff problems is to employ multivalue numerical methods based on numerical collocation. These methods are free from order reduction, as it happens for classical collocation methods. This topic is the subject of Section 2 and Section 3;
- Secondly, the case of fractional differential problems, representing a fundamental tool to model anomalous diffusion [43], material hereditariness, viscoelastic materials [44], and heat conduction [45]. For these problems, the analytical solution is generally not available and the numerical treatment is not an easy task, due to the lack of smoothness of the analytical solution and general methods for Ordinary Differential Equations (ODEs), applied to Fractional Differential Equations (FDEs), generally exhibit low order of convergence, e.g., predictor-corrector methods [46]. Therefore ad hoc numerical methods should be formulated to obtain a higher degree of accuracy, as for example fractional linear multistep methods [47], a class of product integration methods [48]. In this scenario, an important role is played by collocation methods, as for example B-spline wavelets collocation [28], Chebychev collocation [49], spectral collocation [16,33,50,51], and non-polynomial collocation [25]. In this paper, we focus on spline collocation methods, which were first introduced by Blank [52], however the main contribution to the development and analysis of these methods has been given in [19,29,30,53]. More recently, multivalue spline collocation methods have been proposed [18,20,54]. This topic is the subject of Section 4.
2. Multivalue Collocation Methods
2.1. Two-Step Collocation Methods
2.2. Nordsieck GLM Collocation Methods
2.3. Derivation of A-Stable Multivalue Collocation Methods
- Full matrix [4] (GLM-F);
- Lower triangular matrix (GLM-T);
- Singly lower triangular matrix (GLM-S);
- Diagonal matrix (GLM-D).
- GLM-F:
- GLM-T:
- GLM-S:
- GLM-D:
2.4. Numerical Illustration
3. Multivalue Mixed Collocation Methods
- Problem 1:
- Problem 2:
4. Multivalue Spline Collocation Methods for FDEs
4.1. One-Step Collocation Methods for FDEs
4.2. Two-Step Collocation Methods for FDEs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FDEs | Fractional Differential Equation |
GLM | General Linear Method |
IVP | Initial Value Problem |
ODE | Ordinary Differential Equation |
RK | Runge–Kutta |
References
- Butcher, J. Numerical Methods for Ordinary Differential Equations, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Hairer, E.; Wanner, G. Solving Ordinary Differential Equations. II; Springer Series in Computational Mathematics, Stiff and Differential-Algebraic Problems, Second Revised Edition, Paperback; Springer: Berlin, Germany, 2010; Volume 14, p. xvi+614. [Google Scholar]
- Lambert, J. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- D’Ambrosio, R.; Paternoster, B. Multivalue collocation methods free from order reduction. J. Comput. Appl. Math. 2021, 387, 112515. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Ferro, M.; Jackiewicz, Z.; Paternoster, B. Two-step almost collocation methods for ordinary differential equations. Numer. Algorithms 2010, 53, 195–217. [Google Scholar] [CrossRef]
- Costabile, F.; Gualtieri, M.; Napoli, A. Lidstone-based collocation splines for odd-order BVPs. Math. Comput. Simul. 2021, 186, 124–135. [Google Scholar] [CrossRef]
- Costabile, F.; Napoli, A. Collocation for high order differential equations with two-points Hermite boundary conditions. Appl. Numer. Math. 2015, 87, 157–167. [Google Scholar] [CrossRef]
- Costabile, F.; Napoli, A. Collocation for high-order differential equations with Lidstone boundary conditions. J. Appl. Math. 2012, 2012, 120792. [Google Scholar] [CrossRef] [Green Version]
- Costabile, F.; Napoli, A. A class of collocation methods for numerical integration of initial value problems. J. Appl. Math. 2011, 62, 3221–3235. [Google Scholar] [CrossRef] [Green Version]
- Costabile, F.; Napoli, A. Stability of Chebyshev collocation methods. Comput. Math. Appl. 2004, 47, 659–666. [Google Scholar] [CrossRef] [Green Version]
- Lie, I. The stability function for multistep collocation methods. Numer. Math. 1990, 57, 779–787. [Google Scholar] [CrossRef]
- Lie, I.; Nø rsett, S. Superconvergence for Multistep Collocation. Math. Comp. 1989, 52, 65–79. [Google Scholar] [CrossRef]
- Blank, L. Stability of collocation for weakly singular Volterra equations. IMA J. Numer. Anal. 1995, 15, 357–375. [Google Scholar] [CrossRef]
- Brunner, H. Cambridge monographs on applied and computational mathematics. In Collocation Methods for Volterra Integral and Related Functional Differential Equations; Cambridge University Press: Cambridge, UK, 2004; Volume 15, p. xiv+597. [Google Scholar] [CrossRef]
- Brunner, H.; Pedas, A.; Vainikko, G. Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 2001, 39, 957–982. [Google Scholar] [CrossRef]
- Zayernouri, M.; Karniadakis, G.E. Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J. Comput. Phys. 2015, 293, 312–338. [Google Scholar] [CrossRef] [Green Version]
- Cardone, A.; Conte, D. Multistep collocation methods for Volterra integro-differential equations. Appl. Math. Comput. 2013, 221, 770–785. [Google Scholar] [CrossRef]
- Cardone, A.; Conte, D.; Paternoster, B. A MATLAB Implementation of Spline Collocation Methods for Fractional Differential Equations. Lect. Notes Comput. Sci. 2021, 12949, 387–401. [Google Scholar] [CrossRef]
- Cardone, A.; Conte, D. Stability analysis of spline collocation methods for fractional differential equations. Math. Comput. Simulat. 2020, 178, 501–514. [Google Scholar] [CrossRef]
- Cardone, A.; Conte, D.; Paternoster, B. Two-step collocation methods for fractional differential equations. Discrete Contin. Dyn. Syst. Ser. B 2018, 23, 2709–2725. [Google Scholar] [CrossRef] [Green Version]
- Conte, D.; D’Ambrosio, R.; Paternoster, B. Two-step diagonally-implicit collocation based methods for Volterra integral equations. Appl. Numer. Math. 2012, 62, 1312–1324. [Google Scholar] [CrossRef]
- Conte, D.; Paternoster, B. Multistep collocation methods for Volterra integral equations. Appl. Numer. Math. 2009, 59, 1721–1736. [Google Scholar] [CrossRef]
- Conte, D.; Jackiewicz, Z.; Paternoster, B. Two-step almost collocation methods for Volterra integral equations. Appl. Math. Comput. 2008, 204, 839–853. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Paternoster, B. Two-step modified collocation methods with structured coefficient matrices. Appl. Numer. Math. 2012, 62, 1325–1334. [Google Scholar] [CrossRef]
- Ford, N.; Morgado, M.; Rebelo, M. Nonpolynomial collocation approximation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 2013, 16, 874–891. [Google Scholar] [CrossRef]
- Guo, B.Y.; Yan, J.P. Legendre-Gauss collocation method for initial value problems of second order ordinary differential equations. Appl. Numer. Math. 2009, 59, 1386–1408. [Google Scholar] [CrossRef]
- Guo, B.y.; Wang, Z.q. Legendre-Gauss collocation methods for ordinary differential equations. Adv. Comput. Math. 2009, 30, 249–280. [Google Scholar] [CrossRef]
- Li, X. Numerical solution of fractional differential equations using cubic B-spline wavelet collocation method. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 3934–3946. [Google Scholar] [CrossRef]
- Pedas, A.; Tamme, E. On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math. 2011, 235, 3502–3514. [Google Scholar] [CrossRef] [Green Version]
- Pedas, A.; Tamme, E. Numerical solution of nonlinear fractional differential equations by spline collocation methods. J. Comput. Appl. Math. 2014, 255, 216–230. [Google Scholar] [CrossRef]
- Pedas, A.; Tamme, E. Spline collocation for nonlinear fractional boundary value problems. Appl. Math. Comput. 2014, 244, 502–513. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Guo, B.Y. Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations. J. Sci. Comput. 2012, 52, 226–255. [Google Scholar] [CrossRef]
- Zayernouri, M.; Karniadakis, G.E. Fractional spectral collocation method. SIAM J. Sci. Comput. 2014, 36, A40–A62. [Google Scholar] [CrossRef]
- Paternoster, B. Phase-fitted collocation-based Runge-Kutta-Nystrom method. Appl. Numer. Math. 2000, 35, 339–355. [Google Scholar] [CrossRef]
- Conte, D.; D’Ambrosio, R.; D’Arienzo, M.P.; Paternoster, B. Multivalue mixed collocation methods. Appl. Math. Comput. 2021, 409, 126346. [Google Scholar] [CrossRef]
- Norsett, S.; Wanner, G. Perturbed collocation and Runge Kutta methods. Numer. Math. 1981, 38, 193–208. [Google Scholar] [CrossRef]
- Jackiewicz, Z. General Linear Methods for Ordinary Differential Equations; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; p. xvi+482. [Google Scholar] [CrossRef]
- Söderlind, G.; Jay, L.; Calvo, M. Stiffness 1952–2012: Sixty years in search of a definition. BIT Numer. Math. 2015, 55, 531–558. [Google Scholar] [CrossRef]
- Cash, J. Efficient numerical method for the solution of stiff initial-value problems and differential algebraic equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2003, 459, 797–815. [Google Scholar] [CrossRef]
- Bellomo, N.; Bingham, R.; Chaplain, M.A.; Dosi, G.; Forni, G.; Knopoff, D.A.; Lowengrub, J.; Twarock, R.; Virgillito, M.E. A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world. Math. Models Methods Appl. Sci. 2020, 30, 1591–1651. [Google Scholar] [CrossRef]
- Heldt, F.; Frensing, T.; Pflugmacher, A.; Gröpler, R.; Peschel, B.; Reichl, U. Multiscale Modeling of Influenza A Virus Infection Supports the Development of Direct-Acting Antivirals. PLoS Comp. Biol. 2013, 9, e1003372. [Google Scholar] [CrossRef] [Green Version]
- Southern, J.; Pitt-Francis, J.; Whiteley, J.; Stokeley, D.; Kobashi, H.; Nobes, R.; Kadooka, Y.; Gavaghan, D. Multi-scale computational modelling in biology and physiology. Prog. Biophys. Mol. Biol. 2008, 96, 60–89. [Google Scholar] [CrossRef] [PubMed]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 77. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010; p. xx+347. [Google Scholar] [CrossRef]
- Povstenko, Y. Thermoelasticity that uses fractional heat conduction equation. J. Math. Sci. 2009, 162, 296–305. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J.; Freed, A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam. 2002, 29, 3–22. [Google Scholar] [CrossRef]
- Lubich, C. Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comp. 1985, 45, 463–469. [Google Scholar] [CrossRef]
- Garrappa, R.; Popolizio, M. On accurate product integration rules for linear fractional differential equations. J. Comput. Appl. Math. 2011, 235, 1085–1097. [Google Scholar] [CrossRef]
- Khader, M.M. On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 2535–2542. [Google Scholar] [CrossRef]
- Burrage, K.; Cardone, A.; D’Ambrosio, R.; Paternoster, B. Numerical solution of time fractional diffusion systems. Appl. Numer. Math. 2017, 116, 82–94. [Google Scholar] [CrossRef] [Green Version]
- Cardone, A.; D’Ambrosio, R.; Paternoster, B. A spectral method for stochastic fractional differential equations. Appl. Numer. Math. 2019, 139, 115–119. [Google Scholar] [CrossRef]
- Blank, L. Numerical Treatment of Differential Equations of Fractional Order; Technical Report, Numerical Analysis Report; Department of Mathematics, University of Manchester: Manchester, UK, 1996. [Google Scholar]
- Pedas, A.; Tamme, E. Spline collocation methods for linear multi-term fractional differential equations. J. Comput. Appl. Math. 2011, 236, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Cardone, A.; Conte, D.; Paternoster, B. Stability analysis of two-step spline collocation methods for fractional differential equations. submitted.
- D’Ambrosio, R.; Hairer, E. Long-term stability of multi-value methods for ordinary differential equations. J. Sci. Comput. 2014, 60, 627–640. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Hairer, E.; Zbinden, C. G-symplecticity implies conjugate-symplecticity of the underlying one-step method. BIT Numer. Math. 2013, 53, 867–872. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Esposito, E.; Paternoster, B. General linear methods for y″ = f(y(t)). Numer. Algorithms 2012, 61, 331–349. [Google Scholar] [CrossRef]
- Diethelm, K. An application-oriented exposition using differential operators of Caputo type. In The Analysis of Fractional Differential Equations; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2010; Volume 2004, p. viii+247. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204, p. xvi+523. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Mathematics in Science and Engineering; Academic Press, Inc.: San Diego, CA, USA, 1999; Volume 198, p. xxiv+340. [Google Scholar]
- Diethelm, K.; Ford, N.J.; Freed, A.D. Detailed error analysis for a fractional Adams method. Numer. Algorithms 2004, 36, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Cardone, A.; D’Ambrosio, R.; Paternoster, B. Exponentially fitted IMEX methods for advection–diffusion problems. J. Comput. Appl. Math. 2017, 316, 100–108. [Google Scholar] [CrossRef]
- Cardone, A.; D’Ambrosio, R.; Paternoster, B. High order exponentially fitted methods for Volterra integral equations with periodic solution. Appl. Numer. Math. 2017, 114, 18–29. [Google Scholar] [CrossRef]
- Cardone, A.; Ixaru, L.G.; Paternoster, B.; Santomauro, G. Ef-Gaussian direct quadrature methods for Volterra integral equations with periodic solution. Math. Comput. Simul. 2015, 110, 125–143. [Google Scholar] [CrossRef]
- Ixaru, L.G.; Vanden Berghe, G. Exponential Fitting; Mathematics and its Applications, with 1 CD-ROM (Windows, Macintosh and UNIX); Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; Volume 568, p. xiv+308. [Google Scholar]
- D’Ambrosio, R.; Giordano, G.; Paternoster, B.; Ventola, A. Perturbative analysis of stochastic Hamiltonian problems under time discretizations. Appl. Math. Lett. 2021, 409, 107223. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Di Giovacchino, S. Mean-square contractivity of stochastic theta-methods. Comm. Nonlin. Sci. Numer. Simul. 2021, 96, 105671. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Di Giovacchino, S. Nonlinear stability issues for stochastic Runge-Kutta methods. Comm. Nonlin. Sci. Numer. Simul. 2021, 94, 105549. [Google Scholar] [CrossRef]
- Conte, D.; D’Ambrosio, R.; Paternoster, B. Improved theta-methods for stochastic Volterra integral equations. Comm. Nonlin. Sci. Numer. Simul. 2021, 93, 105528. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Scalone, C. On the numerical structure preservation of nonlinear damped stochastic oscillators. Numer. Algorithms 2021, 86, 933–952. [Google Scholar] [CrossRef]
- Conte, D.; D’Ambrosio, R.; Giordano, G.; Paternoster, B. Continuous Extension of Euler-Maruyama Method for Stochastic Differential Equations. Lect. Notes Comput. Sci. 2021, 12949, 135–145. [Google Scholar]
h | GLM-F | GLM-T | GLM-S | GLM-D | RK | |||||
---|---|---|---|---|---|---|---|---|---|---|
Error | p | Error | p | Error | p | Error | p | Error | p | |
1/10 | ||||||||||
1/20 | 5.01 | 4.03 | 4.03 | 4.01 | 1.98 | |||||
1/40 | 5.08 | 4.02 | 4.01 | 4.01 | 1.94 | |||||
1/80 | 4.97 | 4.04 | 3.99 | 4.00 | 1.85 |
h | GLM-F on Problem (29) | MGLM-F on Problem (29) | GLM-F on Problem (30) | MGLM-F on Problem (30) | ||
---|---|---|---|---|---|---|
Error | Error | Error | p | Error | p | |
1/40 | 0.2764 | 0.3626 | 0.0133 | |||
1/80 | 0.0326 | 0.0436 | 3.0560 | 3.7958 | ||
1/160 | 0.0024 | 0.0031 | 3.8140 | 3.9499 | ||
1/320 | 3.9739 | 3.9876 | ||||
1/640 | 3.9916 | 3.9969 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardone, A.; Conte, D.; D’Ambrosio, R.; Paternoster, B. Multivalue Collocation Methods for Ordinary and Fractional Differential Equations. Mathematics 2022, 10, 185. https://doi.org/10.3390/math10020185
Cardone A, Conte D, D’Ambrosio R, Paternoster B. Multivalue Collocation Methods for Ordinary and Fractional Differential Equations. Mathematics. 2022; 10(2):185. https://doi.org/10.3390/math10020185
Chicago/Turabian StyleCardone, Angelamaria, Dajana Conte, Raffaele D’Ambrosio, and Beatrice Paternoster. 2022. "Multivalue Collocation Methods for Ordinary and Fractional Differential Equations" Mathematics 10, no. 2: 185. https://doi.org/10.3390/math10020185
APA StyleCardone, A., Conte, D., D’Ambrosio, R., & Paternoster, B. (2022). Multivalue Collocation Methods for Ordinary and Fractional Differential Equations. Mathematics, 10(2), 185. https://doi.org/10.3390/math10020185