On the Weak Solutions of a Delay Composite Functional Integral Equation of Volterra-Stieltjes Type in Reflexive Banach Space
Abstract
:1. Introduction
2. Existence of at Least One Solution
2.1. Functional Integral Equation
- (i)
- , is continuous and increasing.
- (ii)
- is weakly continuous and weakly satisfies the Lipschitz condition
- (iii)
- is weakly continuous and there exist two positive constants and b, such that
- (iv)
- The function is continuous with
- (v)
- For all such that , the function is nondecreasing on I.
- (vi)
- for any .
- (vii)
2.2. Initial Value Problem
- (viii)
- is weakly-weakly continuous and there exists and a weakly continuous function where , such that
3. Uniqueness of the Solution
- is weakly continuous and and satisfies the weakly Lipschitz condition,
- is weakly continuous and satisfying weakly Lipschitz condition
4. Continuous Dependence
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cichoń, M. Weak solutions of ordinary differential equations in Banach spaces. Discuss. Differ. Inc. Control Optimal. 1995, 15, 5–14. [Google Scholar]
- Cichoń, M.; Kubiaczyk, I.; Sikorska-Nowak, A.; Yantir, A. Weak solutions for dynamic Cauchy problem in Banach spaces. Nonlinear Anal. 2009, 71, 2936–2943. [Google Scholar] [CrossRef]
- Cramer, E.; Lakshmiksntham, V.; Mitchell, A.R. On the existence of weak solutions of differential equations in nonreflexive Banach spaces. Nonlinear Anal. 1978, 2, 259–262. [Google Scholar] [CrossRef] [Green Version]
- Knight, W.J. Solutions of differential equations in Banach spaces. Duke Math. J. 1974, 41, 437–442. [Google Scholar] [CrossRef]
- Kubiaczyk, I.; Szufla, S. Kneser’s theorem for weak solutions of ordinary differential equations in Banach spaces. Publ. Inst. Math. 1982, 32, 99–103. [Google Scholar]
- Agarwal, R.P.; Lupulescu, V.; O’Regan, D.; Rahman, G.U. Nonlinear fractional differential equations in nonreflexive Banach spaces and fractional calculus. Adv. Differ. Equ. 2015, 2015, 112. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Lupulescu, V.; O’Regan, D.; Rahman, G.U. Weak solutions for fractional differential equations in nonreflexive Banach spaces via Riemann-Pettis integrals. Math. Nachr. 2016, 289, 395–409. [Google Scholar] [CrossRef]
- Hashem, H.H.G.; El-Sayed, A.M.A.; Aleniz, M.A. Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space. AIMS Math. 2021, 6, 52–65. [Google Scholar] [CrossRef]
- Regan, D.O. Weak solutions of ordinary differeintial equation in Banach spaces. Appl. Math. Lett. 1999, 12, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Salem, H.A.H.; El-Sayed, A.M.A. Weak solution for fractional order integral equations in reflexive Banach spaces. Math. Slovaca 2005, 55, 169–181. [Google Scholar]
- Salem, H.A.H.; El-Sayed, A.M.A.; Moustafa, O.L. A note on the fractional calculus in Banach spaces. Stud. Sci. Math. Hung. 2005, 42, 115–130. [Google Scholar] [CrossRef]
- Banas, J.; Taoudi, M. Fixed points and solutions of operator equations for the weak topology in Banach algebras. Taiwan. J. Math 2014, 18, 871–893. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hashem, H.H.G. A Coupled systems of integral equations in reflexive Banach spaces. Acta Math. Sci. 2012, 32, 2021–2028. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hashem, H.H.G. Existence results for nonlinear quadratic integral equations of fractional order in Banach algebra. Fract. Calc. Appl. Anal. 2013, 16, 816–826. [Google Scholar] [CrossRef]
- Banaś, J.; Dronka, J. Integral operators of Volterra-Stieltjes type, their properties and applications. Math. Comput. Model. 2000, 32, 1321–1331. [Google Scholar] [CrossRef]
- Banaś, J.; Sadarangani, K. Solvability of Volterra-Stieltjes operator-integral equations and their applications. Comput. Math. Appl. 2001, 41, 1535–1544. [Google Scholar] [CrossRef] [Green Version]
- Banaś, J.; Mena, J.C. Some Properties of Nonlinear Volterra-Stieltjes Integral Operators. Comput. Math. Appl. 2005, 49, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Banaś, J.; O’Regan, D. Volterra-Stieltjes integral operators. Math. Comput. Model. 2005, 41, 335–344. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Omar, Y.M.Y. On the Solutions of a Delay Functional Integral Equation of Volterra-Stieltjes Type. Int. J. Appl. Comput. Math 2020, 6, 8. [Google Scholar] [CrossRef]
- Sidorov, D.N. Existence and blow-up of Kantorovich principal continuous solutions of nonlinear integral equations. Differ. Equ. 2014, 50, 1217–1224. [Google Scholar] [CrossRef]
- Hille, E.; Phillips, R.S. Functional Analysis and Seme-Groups; American Mathematical Society: Providence, RI, USA, 1957; Volume 31. [Google Scholar]
- O’Regan, D. Fixed point theory for weakly sequentially continuous mapping. Math. Comput. Model. 1998, 27, 1–14. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Fomin, S.V. Introductory Real Analysis; Dover Publications Inc.: New York, NY, USA, 1975. [Google Scholar]
- Atangana, A.; Akgül, A.; Owolabi, K.M. Analysis of fractal fractional differential equations. Alex. Eng. J. 2020, 59, 1117–1134. [Google Scholar] [CrossRef]
- Baskonus, H.M.; Sánchez-Ruiz, L.M.; Ciancio, A. New Challenges Arising in Engineering Problems with Fractional and Integer Order. Fractal Fract. 2021, 5, 35. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Gaafar, F.M. Fractional calculus and some intermediate physical processes. Appl. Math. Comput. 2003, 144, 117–126. [Google Scholar] [CrossRef]
- Kunze, H.E.; Torre, D.L.; Mendivil, F.; Ruiz-Galán, M.; Zaki, R. Fractal-Based Methods and Inverse Problems for Differential Equations: Current State of the Art. Math. Probl. Eng. 2014, 2014, 737694. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Sayed, A.M.A.; Omar, Y.M.Y. On the Weak Solutions of a Delay Composite Functional Integral Equation of Volterra-Stieltjes Type in Reflexive Banach Space. Mathematics 2022, 10, 245. https://doi.org/10.3390/math10020245
El-Sayed AMA, Omar YMY. On the Weak Solutions of a Delay Composite Functional Integral Equation of Volterra-Stieltjes Type in Reflexive Banach Space. Mathematics. 2022; 10(2):245. https://doi.org/10.3390/math10020245
Chicago/Turabian StyleEl-Sayed, Ahmed M. A., and Yasmin M. Y. Omar. 2022. "On the Weak Solutions of a Delay Composite Functional Integral Equation of Volterra-Stieltjes Type in Reflexive Banach Space" Mathematics 10, no. 2: 245. https://doi.org/10.3390/math10020245
APA StyleEl-Sayed, A. M. A., & Omar, Y. M. Y. (2022). On the Weak Solutions of a Delay Composite Functional Integral Equation of Volterra-Stieltjes Type in Reflexive Banach Space. Mathematics, 10(2), 245. https://doi.org/10.3390/math10020245