An Optimal Estimate for the Anisotropic Logarithmic Potential
Abstract
:1. Backgrounds
2. Fundamental Properties
- (i)
- Monotonicity: let and are bounded measurable sets and . Then .
- (ii)
- Translation-invariance: for all , let . Then .
- (iii)
- Homogeneity: for all , .
3. Optimal Estimate and Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stein, E. Singular Integrals and Differentiability Properties of Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Sawano, Y.; Sugano, S.; Tanaka, H. Olsen’s inequality and its applications to Schrödinger equations. RIMS Kôkyûroku Bessatsu 2011, B26, 51–80. [Google Scholar]
- Liu, L.; Wu, S.; Yang, D.; Yuan, W. New characterizations of Morrey spaces and their preduals with applications to fractional Laplace equations. J. Differ. Equ. 2018, 266, 5118–5167. [Google Scholar] [CrossRef]
- Rozenblum, G.; Ruzhansky, M.; Suragan, D. Isoperimetric inequalities for Schatten norms of Riesz potentials. J. Funct. Anal. 2016, 271, 224–239. [Google Scholar] [CrossRef] [Green Version]
- Bent, F. The logarithmic potential in higher dimensions. Mat. Fys. Medd. Dan. Cid. Selsk. 1960, 33, 1–14. [Google Scholar]
- Hou, S.; Xiao, J. Convex bodies via gravitational potentials. Expo. Math. 2017, 35, 478–482. [Google Scholar] [CrossRef]
- Ludwig, M. Anisotropic fractional perimeters. J. Differ. Geom. 2014, 96, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, M. Anisotropic fractional Sobolev norms. Adv. Math. 2014, 252, 150–157. [Google Scholar] [CrossRef]
- Xiao, J.; Ye, D. Anisotropic Sobolev capacity with fractional order. Can. J. Math. 2017, 69, 873–889. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Xiao, J.; Ye, D. A mixed volume from the anisotropic Riesz-potential. Trans. Lond. Math. Soc. 2018, 5, 71–96. [Google Scholar] [CrossRef]
- Hou, S.; Xiao, J. A mixed volumetry for the anisotropic logarithmic potential. J. Geom. Anal. 2018, 28, 2028–2049. [Google Scholar] [CrossRef]
- Gardner, R.; Hug, D.; Weil, W.; Ye, D. The dual Orlicz–Brunn–Minkowski theory. J. Math. Anal. Appl. 2015, 430, 810–829. [Google Scholar] [CrossRef] [Green Version]
- Schneider, R. Convex Bodies: The Brunn-Minkowski Theory, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Fairweather, G.; Johnston, R. The method of fundamental solutions for problems in potential theory. In Treatment of Integral Equations by Numerical Methods; Baker, C., Miller, G., Eds.; Academic Press Inc. (London) Ltd.: London, UK, 1982. [Google Scholar]
- Jaswon, M.; Symm, G. Integral Equation Methods in Potential Theory and Elastostatics; Academic Press: London, UK, 1977. [Google Scholar]
- Wang, W.; Liu, L. The dual log-Brunn-Minkowski inequalities. Taiwan J. Math. 2016, 20, 909–919. [Google Scholar] [CrossRef]
- Böröczky, K.; Lutwak, E.; Yang, D.; Zhang, G. The log-Brunn-Minkowski inequality. Adv. Math. 2012, 231, 1974–1997. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, S. An Optimal Estimate for the Anisotropic Logarithmic Potential. Mathematics 2022, 10, 261. https://doi.org/10.3390/math10020261
Hou S. An Optimal Estimate for the Anisotropic Logarithmic Potential. Mathematics. 2022; 10(2):261. https://doi.org/10.3390/math10020261
Chicago/Turabian StyleHou, Shaoxiong. 2022. "An Optimal Estimate for the Anisotropic Logarithmic Potential" Mathematics 10, no. 2: 261. https://doi.org/10.3390/math10020261
APA StyleHou, S. (2022). An Optimal Estimate for the Anisotropic Logarithmic Potential. Mathematics, 10(2), 261. https://doi.org/10.3390/math10020261