Lattice Computing: A Mathematical Modelling Paradigm for Cyber-Physical System Applications
Funding
Acknowledgments
Conflicts of Interest
References
- Kaburlasos, V.G. Towards a Unified Modeling and Knowledge-Representation Based on Lattice Theory—Computational Intelligence and Soft Computing Applications; Series: Studies in Computational Intelligence; Springer: Heidelberg, Germany, 2006; Volume 27, ISBN 3-540-34169-2. [Google Scholar]
- Birkhoff, G. Lattice Theory; American Mathematical Society, Colloquium Publications: Providence, RI, USA, 1967. [Google Scholar]
- Ritter, G.X.; Urcid, G. Introduction to Lattice Algebra with Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks; Chapman and Hall/CRC: Boca Raton, FL, USA, 2021; ISBN 9780367720292. [Google Scholar]
- Kaburlasos, V.G. The Lattice Computing (LC) paradigm. In Proceedings of the 15th International Conference on Concept Lattices and their Applications (CLA 2020), Tallinn, Estonia, 29 June–1 July 2020; pp. 1–8. Available online: http://ceur-ws.org/Vol-2668/ (accessed on 5 January 2022).
- Liu, J.-B.; Munir, M.; Munir, Q.-U.-A.; Nizami, A.R. Some Metrical Properties of Lattice Graphs of Finite Groups. Mathematics 2019, 7, 398. [Google Scholar] [CrossRef] [Green Version]
- Lytridis, C.; Lekova, A.; Bazinas, C.; Manios, M.; Kaburlasos, V.G. WINkNN: Windowed Intervals’ Number kNN Classifier for Efficient Time-Series Applications. Mathematics 2020, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Valle, M.E. Reduced Dilation-Erosion Perceptron for Binary Classification. Mathematics 2020, 8, 512. [Google Scholar] [CrossRef] [Green Version]
- Ritter, G.X.; Urcid, G.; Lara-Rodríguez, L.-D. Similarity Measures for Learning in Lattice Based Biomimetic Neural Networks. Mathematics 2020, 8, 1439. [Google Scholar] [CrossRef]
- Valverde-Albacete, F.J.; Peláez-Moreno, C. The Singular Value Decomposition over Completed Idempotent Semifields. Mathematics 2020, 8, 1577. [Google Scholar] [CrossRef]
- Valverde-Albacete, F.J.; Peláez-Moreno, C. Four-Fold Formal Concept Analysis Based on Complete Idempotent Semifields. Mathematics 2021, 9, 173. [Google Scholar] [CrossRef]
- Hirata, N.S.T.; Papakostas, G.A. On Machine-Learning Morphological Image Operators. Mathematics 2021, 9, 1854. [Google Scholar] [CrossRef]
- Kaburlasos, V.G.; Lytridis, C.; Vrochidou, E.; Bazinas, C.; Papakostas, G.A.; Lekova, A.; Bouattane, O.; Youssfi, M.; Hashimoto, T. Granule-Based-Classifier (GbC): A Lattice Computing Scheme Applied on Tree Data Structures. Mathematics 2021, 9, 2889. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaburlasos, V.G. Lattice Computing: A Mathematical Modelling Paradigm for Cyber-Physical System Applications. Mathematics 2022, 10, 271. https://doi.org/10.3390/math10020271
Kaburlasos VG. Lattice Computing: A Mathematical Modelling Paradigm for Cyber-Physical System Applications. Mathematics. 2022; 10(2):271. https://doi.org/10.3390/math10020271
Chicago/Turabian StyleKaburlasos, Vassilis G. 2022. "Lattice Computing: A Mathematical Modelling Paradigm for Cyber-Physical System Applications" Mathematics 10, no. 2: 271. https://doi.org/10.3390/math10020271
APA StyleKaburlasos, V. G. (2022). Lattice Computing: A Mathematical Modelling Paradigm for Cyber-Physical System Applications. Mathematics, 10(2), 271. https://doi.org/10.3390/math10020271