Approximation of the Solution of Delay Fractional Differential Equation Using AA-Iterative Scheme
Abstract
:1. Introduction and Preliminaries
2. Convergence and Stability Results
3. Convergence Results for b-Enriched Nonexpansive Mappings
4. Application: Solution of Delay Fractional Differential Equations
- f satisfies the Lipschitz condition with respect to 2nd and 3rd variables: That is, there exists a positive constant (depending on f) such that
- There exists a positive constant depending upon L such that , that is,
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Surles operations dans les ensembles abstraites et leurs applications. Fund. Math. 1922, 2, 133–187. [Google Scholar] [CrossRef]
- Ali, J.; Ali, F. A new iterative scheme to approximating fixed points and the solution of a delay differential equation. J. Nonlinear Convex Anal. 2020, 21, 2151–2163. [Google Scholar]
- Jajarmi, A.; Baleanu, D. A new iterative method for the numerical solution of high-order non-linear fractional boundary value problems. Front. Phys. 2020, 8, 2020. [Google Scholar] [CrossRef]
- Okeke, G.A.; Abbas, M. A solution of delay differential equations via Picard–Krasnoselskii hybrid iterative process. Arab. J. Math. 2017, 6, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Okeke, G.A.; Abbas, M.; de la Sen, M. Approximation of the fixed point of multivalued quasi-nonexpansive mappings via a faster iterative process with applications. Discret. Dyn. Nat. Soc. 2020, 2020, 8634050. [Google Scholar] [CrossRef]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iteration scheme for approximating fixed points of nonexpansive mappings. Filomat 2016, 30, 2711–2720. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.Y.; Cho, Y.J.; Kang, S.M. A new iterative algorithm for approximating common fixed points for asymptotically nonexpansive mappings. Fixed Point Theory Appl. 2007, 2007, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 1991, 43, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V.; Păcurar, M. Approximating fixed points of enriched contractions in Banach spaces. J. Fixed Point Theory Appl. 2020, 22, 38. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V. Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces. Carpathian J. Math. 2019, 35, 293–304. [Google Scholar] [CrossRef]
- Krasnosel’skii, M.A. Two comments on the method of successive approximations. Usp. Math. Nauk. 1955, 10, 123–127. [Google Scholar]
- Gallagher, T.M. The demiclosedness principle for mean nonexpansive mappings. J. Math. Anal. Appl. 2016, 439, 832–842. [Google Scholar] [CrossRef]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Górnicki, J.; Bisht, R.K. Around averaged mappings. J. Fixed Point Theory Appl. 2021, 23, 48. [Google Scholar] [CrossRef]
- Berinde, V. Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators. Fixed Point Theory Appl. 2004, 2004, 716359. [Google Scholar] [CrossRef] [Green Version]
- Picard, E. Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures Appl. 1890, 6, 145–210. [Google Scholar]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Regan, D.O.; Sahu, D.R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 2007, 61, 2007. [Google Scholar]
- Abbas, M.; Nazir, T. Some new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn. 2014, 2014, 223–234. [Google Scholar]
- Ullah, K.; Arshad, M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat 2018, 32, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Ostrowski, A.M. The Round-off Stability of Iterations. ZAMM-J. Appl. Math. Mech. Angew. Math. Mech. 1967, 47, 77–81. [Google Scholar] [CrossRef]
- Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Senter, H.F.; Dotson, W.G. Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 1974, 44, 375–380. [Google Scholar] [CrossRef]
- Cong, N.; Tuan, H. Existence, uniqueness, and exponential boundedness of global solutions to delay fractional differential equations. Mediterr. J. Math. 2017, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.-F.; Chen, D.-Y.; Zhang, X.-G.; Wu, Y. The existence and uniqueness theorem of the solution to a class of nonlinear fractional order system with time delay. Appl. Math. Lett. 2016, 53, 45–51. [Google Scholar] [CrossRef]
- Boutiara, A.; Matar, M.M.; Kaabar, M.K.A.; Martínez, F.; Sina, E.; Rezapour, S. Some Qualitative Analyses of Neutral Functional Delay Differential Equation with Generalized Caputo Operator. J. Funct. Spaces 2021, 2021, 9993177. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Sukale, Y.; Bhalekar, S. Solving fractional delay differential equations: A new approach. Fract. Calc. Appl. Anal. 2015, 18, 400–418. [Google Scholar] [CrossRef]
- Garrappa, R.; Kaslik, E. On initial conditions for fractional delay differential equations. Commun. Nonlinear Sci. Numer. Simul. 1955, 90, 105359. [Google Scholar] [CrossRef]
- Jhinga, A.; Daftardar-Gejji, V. A new numerical method for solving fractional delay differential equations. Comput. Appl. Math. 2019, 38, 166. [Google Scholar] [CrossRef]
- Kilbas, A.; Marzan, S. Cauchy problem for differential equation with Caputo derivative. Fract. Calc. Appl. Anal. 2004, 7, 297–321. [Google Scholar]
Steps | Our Scheme | F-Iteration | M-Iteration | Thakur | Abbas | Agarwal (S) | Noor |
---|---|---|---|---|---|---|---|
1 | 8.0000000000 | 8.0000000000 | 8.0000000000 | 8.0000000000 | 8.0000000000 | 8.0000000000 | 8.0000000000 |
2 | 5.0676378241 | 5.3769675444 | 4.4076224301 | 4.8998176879 | 3.2590564957 | 5.2755013581 | 4.5632864505 |
3 | 5.0015249584 | 5.0473681765 | 5.1169703950 | 5.0033454985 | 6.0102947616 | 5.0253003327 | 5.0635729080 |
4 | 5.0000343816 | 5.0059520883 | 4.9769031205 | 4.9998882800 | 4.4137112990 | 5.0023234253 | 4.9907456165 |
5 | 5.0000007751 | 5.0007479147 | 5.0045606911 | 5.0000037307 | 5.3402318351 | 5.0002133689 | 5.0013471715 |
6 | 5.0000000174 | 5.0000939798 | 4.9990994496 | 4.9999998754 | 4.8025585322 | 5.0000195944 | 4.9998038906 |
7 | 5.0000000003 | 5.0000118091 | 5.0001778219 | 5.0000000041 | 5.1145781469 | 5.0000017994 | 5.0000285478 |
8 | 5.0000000000 | 5.0000014838 | 4.9999648874 | 4.9999999998 | 4.9335086397 | 5.0000001652 | 4.9999958442 |
9 | 5.0000000000 | 5.0000001864 | 5.0000069333 | 5.0000000000 | 5.0385859005 | 5.0000000151 | 5.0000006049 |
10 | 5.0000000000 | 5.0000000234 | 4.9999986309 | 4.9999999999 | 4.9776080423 | 5.0000000013 | 4.9999999119 |
11 | 5.0000000000 | 5.0000000029 | 5.0000002703 | 5.0000000000 | 5.0129943777 | 5.0000000001 | 5.0000000128 |
12 | 5.0000000000 | 5.0000000003 | 4.9999999466 | 5.0000000000 | 4.9924591741 | 5.0000000000 | 4.9999999981 |
13 | 5.0000000000 | 5.0000000000 | 5.0000000105 | 5.0000000000 | 5.0043760505 | 5.0000000000 | 5.0000000002 |
14 | 5.0000000000 | 5.0000000000 | 4.9999999979 | 5.0000000000 | 4.9974605143 | 5.0000000000 | 4.9999999999 |
15 | 5.0000000000 | 5.0000000000 | 5.0000000004 | 5.0000000000 | 5.0014737003 | 5.0000000000 | 5.0000000000 |
Steps | Our Scheme | F-Iteration | M-Iteration | Thakur | Abbas | Agarwal (S) | Noor | Ishikawa |
---|---|---|---|---|---|---|---|---|
1 | 32.000000 | 32.000000 | 32.000000 | 32.000000 | 32.000000 | 32.000000 | 32.000000 | 32.000000 |
2 | 22.278205 | 23.567093 | 25.724609 | 28.244764 | 28.597925 | 28.809511 | 29.184632 | 29.393312 |
3 | 14.413304 | 16.360701 | 20.010430 | 24.655942 | 25.328526 | 25.733352 | 26.459743 | 26.862041 |
4 | 9.773593 | 11.249118 | 15.144634 | 21.277941 | 22.223234 | 22.796602 | 23.842420 | 24.419226 |
5 | 8.306540 | 8.830832 | 11.514396 | 18.169031 | 19.322437 | 20.031078 | 21.353609 | 22.080669 |
6 | 8.044444 | 8.101773 | 9.373660 | 15.402469 | 16.676705 | 17.476424 | 19.018608 | 19.865335 |
7 | 8.006238 | 8.028979 | 8.445143 | 13.061008 | 14.345486 | 15.179932 | 16.867035 | 17.795540 |
8 | 8.000871 | 8.005104 | 8.131183 | 11.216802 | 12.389581 | 13.192971 | 14.931542 | 15.896548 |
9 | 8.000122 | 8.000896 | 8.037368 | 9.894756 | 10.853750 | 11.561186 | 13.244292 | 14.195061 |
10 | 8.000017 | 8.000157 | 8.010535 | 9.042566 | 9.742503 | 10.307701 | 11.830495 | 12.715924 |
11 | 8.000002 | 8.000027 | 8.002961 | 8.545043 | 9.006551 | 9.416511 | 10.700014 | 11.476899 |
12 | 8.000000 | 8.000004 | 8.000832 | 8.275745 | 8.557262 | 8.830642 | 9.840935 | 10.482609 |
13 | 8.000000 | 8.000001 | 8.000234 | 8.136916 | 8.299859 | 8.470871 | 9.219950 | 9.720547 |
14 | 8.000000 | 8.000000 | 8.000065 | 8.067312 | 8.158591 | 8.260996 | 8.790497 | 9.162136 |
15 | 8.000000 | 8.000000 | 8.000018 | 8.032926 | 8.083060 | 8.142693 | 8.503861 | 8.768990 |
16 | 8.000000 | 8.000000 | 8.000005 | 8.016066 | 8.043271 | 8.077396 | 8.317512 | 8.501076 |
17 | 8.000000 | 8.000000 | 8.000001 | 8.007829 | 8.022479 | 8.041793 | 8.198569 | 8.322954 |
18 | 8.000000 | 8.000000 | 8.000000 | 8.003813 | 8.011660 | 8.022512 | 8.123571 | 8.206601 |
19 | 8.000000 | 8.000000 | 8.000000 | 8.001857 | 8.006044 | 8.012111 | 8.076659 | 8.131513 |
20 | 8.000000 | 8.000000 | 8.000000 | 8.000904 | 8.003131 | 8.006510 | 8.047462 | 8.083445 |
21 | 8.000000 | 8.000000 | 8.000000 | 8.000440 | 8.001622 | 8.003498 | 8.029349 | 8.052835 |
22 | 8.000000 | 8.000000 | 8.000000 | 8.000214 | 8.000840 | 8.001879 | 8.018135 | 8.033409 |
23 | 8.000000 | 8.000000 | 8.000000 | 8.000104 | 8.000435 | 8.001010 | 8.011200 | 8.021107 |
24 | 8.000000 | 8.000000 | 8.000000 | 8.000051 | 8.000225 | 8.000542 | 8.006915 | 8.013328 |
25 | 8.000000 | 8.000000 | 8.000000 | 8.000025 | 8.000117 | 8.000291 | 8.004269 | 8.008413 |
26 | 8.000000 | 8.000000 | 8.000000 | 8.000012 | 8.000060 | 8.000156 | 8.002635 | 8.005309 |
27 | 8.000000 | 8.000000 | 8.000000 | 8.000006 | 8.000031 | 8.000084 | 8.001626 | 8.003350 |
28 | 8.000000 | 8.000000 | 8.000000 | 8.000003 | 8.000016 | 8.000045 | 8.001004 | 8.002114 |
29 | 8.000000 | 8.000000 | 8.000000 | 8.000001 | 8.000008 | 8.000024 | 8.000619 | 8.001334 |
30 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000004 | 8.000013 | 8.000382 | 8.000841 |
31 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000002 | 8.000007 | 8.000236 | 8.000531 |
32 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000001 | 8.000003 | 8.000146 | 8.000335 |
33 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000002 | 8.000090 | 8.000211 |
34 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000001 | 8.000055 | 8.000133 |
35 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000034 | 8.000084 |
36 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000021 | 8.000053 |
37 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000013 | 8.000033 |
38 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000008 | 8.000021 |
39 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000004 | 8.000013 |
40 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000003 | 8.000008 |
41 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000001 | 8.000005 |
42 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000003 |
43 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000002 |
44 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000001 |
45 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 | 8.000000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, M.; Asghar, M.W.; De la Sen, M. Approximation of the Solution of Delay Fractional Differential Equation Using AA-Iterative Scheme. Mathematics 2022, 10, 273. https://doi.org/10.3390/math10020273
Abbas M, Asghar MW, De la Sen M. Approximation of the Solution of Delay Fractional Differential Equation Using AA-Iterative Scheme. Mathematics. 2022; 10(2):273. https://doi.org/10.3390/math10020273
Chicago/Turabian StyleAbbas, Mujahid, Muhammad Waseem Asghar, and Manuel De la Sen. 2022. "Approximation of the Solution of Delay Fractional Differential Equation Using AA-Iterative Scheme" Mathematics 10, no. 2: 273. https://doi.org/10.3390/math10020273
APA StyleAbbas, M., Asghar, M. W., & De la Sen, M. (2022). Approximation of the Solution of Delay Fractional Differential Equation Using AA-Iterative Scheme. Mathematics, 10(2), 273. https://doi.org/10.3390/math10020273