Next Article in Journal
Analysis of Innovation Drivers of New and Old Kinetic Energy Conversion Using a Hybrid Multiple-Criteria Decision-Making Model in the Post-COVID-19 Era: A Chinese Case
Previous Article in Journal
Intention Prediction of a Hypersonic Glide Vehicle Using a Satellite Constellation Based on Deep Learning
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Class of Preinvex Fuzzy Mappings and Related Inequalities

by
Muhammad Bilal Khan
1,*,
Gustavo Santos-García
2,*,
Muhammad Aslam Noor
1 and
Mohamed S. Soliman
3
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Facultad de Economía y Empresa and Multidisciplinary Institute of Enterprise (IME), University of Salamanca, 37007 Salamanca, Spain
3
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Mathematics 2022, 10(20), 3753; https://doi.org/10.3390/math10203753
Submission received: 30 August 2022 / Revised: 2 October 2022 / Accepted: 10 October 2022 / Published: 12 October 2022
(This article belongs to the Section D2: Operations Research and Fuzzy Decision Making)

Abstract

:
This study aims to consider new kinds of generalized convex fuzzy mappings (convex-𝘍𝘔), which are called strongly α -preinvex fuzzy mappings. We investigated the characterization of preinvex-𝘍𝘔s using α -preinvex-𝘍𝘔s, which can be viewed as a novel and innovative application. Some different types of strongly α -preinvex-𝘍𝘔s are introduced, and their properties are investigated. Under appropriate conditions, we establish the relationship between strongly α -invex-𝘍𝘔s and strongly α 𝑗 -monotone fuzzy operators. Then, the minimum of strongly α -preinvex-𝘍𝘔s are characterized by strongly fuzzy α -variational-like inequalities. Results obtained in this paper can be viewed as a refinement and improvement of previously known results.

1. Introduction

For classical convexity, several generalizations and extensions have recently been researched. Strongly convex functions on convex sets are a key concept in optimization theory and related fields, developed and investigated by Polyak [1]. Karmardian [2] discussed how when utilizing highly convex functions, there is only one way to solve nonlinear complementarity issues. Zhao and Wang [3], Qu and Li [4], and Nikodem and Pales [5] researched convergence analysis for resolving equilibrium issues and variational inequalities with the use of strongly convex functions. Regarding the characteristics and applications of strongly convex functions, we recommend the reader to [6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25] and its references for further information. Hanson [26] proposed invex functions for differentiable functions, and they played an important role in mathematical programming. Israel and Mond proposed and researched the idea of invex sets and preinvex functions. Differential preinvex functions are invex functions, as is common knowledge. The opposite is likewise true in light of Condition C [27]. Furthermore, Noor [28] has shown that the minimum may be described by variational inequalities by researching the optimality criteria of differentiable preinvex functions. Noor et al. [29,30,31,32,33] examined the uses of strongly preinvex functions and their characteristics. Jeyakumar and Mond [34] established a different class of V-invex mapping on the V-invex set (nonconvex function), which has important applications in multiobjective optimization and extended convex programming. See [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57], as well as the references therein, for other uses and characteristics of strongly preinvex functions.
Operations research, computer science, management sciences, artificial intelligence, control engineering, and decision sciences are just a few of the applied sciences and pure mathematics problems that are studied in [58] as a result of the extensive research on fuzzy sets and systems that has been performed on the development of various fields. Convex analysis has contributed significantly and fundamentally to the development of several practical and pure scientific domains. Similar to this, fuzzy convex analysis is regarded as the core concept in fuzzy optimization. In order to describe a fuzzy number, it is an interval’s generalized form (in crisp set theory). Fuzzy numbers were first defined by Zadeh [58], and subsequently, Dubois and Prade [59] expanded on this work by adding new requirements for fuzzy numbers. Additionally, Goetschel and Voxman [60] adjusted many conditions on fuzzy numbers to make them easier to manage. For example, in [61], the first criterion for a fuzzy number is that it is a continuous function, but in [60], the fuzzy number is upper semi-continuous. The objective is to make it simple to establish a metric for a collection of fuzzy numbers by relaxing the requirements on them, which will then enable us to examine certain fundamental topological space features. The concepts of fuzzy mapping (𝘍𝘔) from n to the set of fuzzy numbers, Lipschitz continuity of fuzzy values, fuzzy logarithmic convex and quasi-convex-FMs, and others were studied by Furukawa [61], Nanda, and Kar [62], and Syau [63]. Yan and Xu [64] proposed the notions of epigraphs and convexity of 𝘍𝘔s and detailed the characteristics of convex fuzzy and quasi-convex- 𝘍𝘔s based on the concept of ordering established by Goetschel and Voxman [65]. For more information, see [66,67,68,69,70,71,72,73,74,75,76] and the references therein.
The concept of fuzzy convexity has been broadly applied and expanded in several ways, with important applications in numerous fields. Preinvex-𝘍𝘔 should be mentioned as one of the convex-𝘍𝘔 generalizations that are most often used. By introducing and researching the concept of fuzzy preinvex mapping on the fuzzy invex set, Noor [77] showed that the fuzzy optimality requirements of differentiable fuzzy preinvex mappings may be identified by variational-like inequalities. Preinvex-local 𝘍𝘔s minimums are also global minimums on invex sets, and an invex set’s epigraph is a necessary and sufficient condition for an 𝘍𝘔 to be preinvex. The preinvex-𝘍𝘔 notion that Noor [77] introduced was further developed by Syau in [78]. Additionally, Syau and Lee [79] covered the terms for continuity and convexity using metric definitions based on fuzzy numbers and linear ordering. Extension of the Weierstrass theorem from real-valued functions to 𝘍𝘔s is also one of their key contributions in the literature. See [80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98] and its references for contemporary applications.
Inspired and motivated by current research efforts, as well as by the significance of the concepts of the invexity and preinvexity of mappings, in Section 2, we review various concepts that will be useful for further research, including fuzzy sets, fuzzy numbers, 𝘍𝘔s, convex-𝘍𝘔s, and preinvex-𝘍𝘔s. Section 3 examines the primary findings. The concepts of strongly α -preinvex, quasi α -preinvex, and log α -preinvex-𝘍𝘔s are presented in Section 3, along with some of their features. Section 4 studies brand-new connections between distinct strongly α -preinvex-𝘍𝘔 ideas. Then, as an intriguing byproduct of our primary findings, the minimum of strongly α -preinvexity is characterized by strongly fuzzy α -variational-like inequalities.

2. Preliminaries

A fuzzy set on is a mapping ψ : 0 , 1 , for each fuzzy set and ĩ 0 ,   1 , then ĩ -level sets of ψ are denoted and defined as follows ψ ĩ = σ |   ψ σ ĩ . If ĩ = 0 , then s u p p ψ = σ   ψ σ 0 is considered support of ψ . By ψ 0 , we define the closure of s u p p ψ .
Definition 1.
A fuzzy set is considered a fuzzy number with the following properties:
(a) 
ψ is normal, i.e., there exists σ such that ψ σ = 1 ;
(b) 
ψ 1 s σ + s ς m i n ψ σ ,   ψ ς for all σ , ς , s 0 , 1 ;
(c) 
sup ψ is compact.
E 0 denotes the set of all fuzzy numbers. For a fuzzy number, it is convenient to distinguish the following ĩ -levels,
ψ ĩ = σ |   ψ σ ĩ ,  
From this definition, we have
ψ ĩ = ψ * ĩ ,   ψ * ĩ ,
where
ψ * ĩ = i n f σ |   ψ σ ĩ ,   ψ * ĩ = s u p σ |   ψ σ ĩ .  
Since each r is also a fuzzy number, it can be defined as
r ˜ σ = 1   if   σ = r 0   if   σ r   .
Now we discuss some properties of fuzzy numbers under addition and scalar multiplication. If ψ 1 , ϕ 1 E 0 and ρ , then ψ 1 + ˜ ϕ 1 and ρ ψ 1   can be defined as
ψ 1 + ˜ ϕ 1 w = s u p σ + ς = w m i n ψ 1 w ,   ϕ 1 w ,
ρ ψ 1 σ = ψ 1 ρ 1 σ   if   ρ 0 0 ,   if   ρ = 0 .
It is also well known that for any ψ 1 , ϕ 1 E 0 and ρ
ψ 1 + ˜ ϕ 1 * ĩ = ψ 1 * ĩ + ϕ 1 * ĩ ,   ψ 1 + ˜ ϕ 1 * ĩ = ψ 1 * ĩ + ϕ 1 * ĩ ,
ρ ψ 1 * ĩ = ρ ψ 1 * ĩ   i f   ρ 0 ρ ψ 1 * ĩ   i f   ρ < 0   ,   ( ρ ψ 1 ) * ĩ = ρ ψ 1 * ĩ   i f   ρ 0 ρ ψ 1 * ĩ   i f   ρ < 0   ,
for each ĩ 0 ,   1 . From this definition, we have
ψ 1 + ˜ ϕ 1 = ψ 1 * ĩ + ϕ 1 * ĩ , ψ 1 * ĩ + ϕ 1 * ĩ , ĩ : ĩ 0 ,   1
ρ ψ 1 = ρ ψ 1 * ĩ , ρ ψ 1 * ĩ , ĩ : ĩ 0 ,   1 .
Remark 1.
Obviously, E 0 . is closed under addition and nonnegative scalar multiplication. Furthermore, for each scalar number r ,
ψ 1 + ˜ r = ψ * ĩ + r ,   ψ * ĩ + r .
For any ψ 1 , ϕ 1 E 0 , we say that ψ 1 ϕ 1 if for all ĩ 0 ,   1 , ψ 1 * ĩ ϕ 1 * ĩ , and ψ 1 * ĩ ϕ 1 * ĩ . If ψ 1 ϕ 1 , then there exist ĩ 0 ,   1 such that ψ 1 * ĩ < ϕ 1 * ĩ or ψ 1 * ĩ ϕ 1 * ĩ . We say comparable if for any ψ 1 , ϕ 1 E 0 , we have ψ 1 ϕ 1 or ψ 1 ϕ 1 ; otherwise, they are noncomparable. Sometimes we may write ψ 1 ϕ 1 instead of ϕ 1 ψ 1 and note that E 0 is a partial ordered set under the relation .
If ψ 1 , ϕ 1 E 0 , there exist ω 1 E 0 such that ψ 1 = ϕ 1 + ˜ ω 1 , then by this result, we have the existence of the Hukuhara difference of ψ 1 and ϕ 1 , and we say that ω 1 is the H-difference of ψ 1 and ϕ 1 , denoted by ψ 1 ˜ ϕ 1 (see [82]). If H-difference exists, then ω 1 * ĩ = ψ 1 ˜ ϕ 1 * ĩ = ψ 1 * ĩ ϕ 1 * ĩ , ω 1 * = ψ 1 ˜ ϕ 1 * ĩ = ψ 1 * ĩ ϕ 1 * ĩ .
A mapping   Υ ˜ : C E 0 is considered 𝘍𝘔. For each ĩ ,   0 ,   1   associated with Υ ˜ , we define the family of interval-valued functions Υ ˜ ĩ : C Ҡ C defined by Υ ˜ ĩ σ = Υ ˜ σ ĩ and denoted by Υ ˜ σ ĩ = Υ ˜ * σ , ĩ ,   Υ ˜ * σ , ĩ Now, for any ĩ 0 ,   1 , the endpoint functions Υ ˜ * σ , ĩ ,   Υ ˜ * σ , ĩ :   C are called lower and upper functions, respectively.
Definition 2.
[80] Let I = m ,   n and σ m ,   n . Then 𝘍𝘔 Υ ˜ : m ,   n E 0 is considered a generalized differentiable (G-differentiable) at σ if there exists an element   Υ ˜ , σ E 0 such that for all 0 < t , sufficiently small, there exist Υ ˜ σ + t     ˜ Υ ˜ σ ,   Υ ˜ σ     ˜ Υ ˜ σ t and the limits (in the metric D )
lim t 0 + Υ ˜ σ + t ˜ Υ ˜ σ t = lim t 0 + Υ ˜ σ ˜ Υ ˜ σ t t = Υ ˜ , σ
or
lim t 0 + Υ ˜ σ ˜ Υ ˜ σ + t t = lim t 0 + Υ ˜ σ t ˜ Υ ˜ σ t = Υ ˜ , σ
or
lim t 0 + Υ ˜ σ + t ˜ Υ ˜ σ t = lim t 0 + Υ ˜ σ t ˜ Υ ˜ σ t = Υ ˜ , σ
or
lim t 0 + Υ ˜ σ ˜ Υ ˜ σ + t t = lim t 0 + Υ ˜ σ ˜ Υ ˜ σ t t = Υ ˜ , σ
where the limits are taken in the metric space E , D , for ψ 1 ,   ψ 2 E 0
D ψ 1 ,   ψ 2 = sup 0 ĩ 1 H ψ 1 ĩ ,   ψ 2 ĩ ,
and H denotes the well-known Hausdorff metric on the space of intervals Ҡ C .
Definition 3.
[62] A 𝘍𝘔 Υ ˜ : C E 0 is considered convex on the convex set C if
Υ ˜ 1 s σ + s ς 1 s Υ ˜ σ + ˜ s Υ ˜ ς     σ , ς C ,   s 0 ,   1 .
Strictly fuzzy convex mapping if strict inequality holds for Υ ˜ σ Υ ˜ ς . Υ ˜ : C E 0 is considered a fuzzy concave mapping if Υ ˜ is convex on C . Strictly fuzzy concave mapping if strict inequality holds for Υ ˜ σ Υ ˜ ς .
Definition 4.
[62] A 𝘍𝘔 Υ ˜ : C E 0 is considered quasi-convex on the convex set C if
Υ ˜ 1 s σ + s ς m a x Υ ˜ σ ,   Υ ˜ ς     σ , ς C ,   s 0 ,   1 .
Definition 5.
[27] The set C in is considered an invex set pertaining to arbitrary bifunction 𝑗 . , . , if
σ + s 𝑗 ς , σ C ,     σ , ς C ,   s 0 ,   1 .
The invex set C is also called the 𝑗 -connected set if 𝑗 ς , σ = ς σ . Note that, convex set 𝑗 ς , σ = ς σ is considered an invex set in the classical sense, but the converse is not valid. For instance, the following set C = 7 , 2 2 , 10 is an invex set pertaining to nontrivial bifunction 𝑗 : × given as
𝑗 ς , σ = ς σ ,   ς 0 ,   σ 0 , 𝑗 ς , σ = ς σ ,   0 ς ,   0 σ , 𝑗 ς , σ = 7 σ ,   ς 0 σ , 𝑗 ς , σ = 2 σ ,   σ 0 ς .
Definition 6.
[27] A 𝘍𝘔 Υ ˜ : C E 0 is considered preinvex on invex set C pertaining to bifunction 𝑗 if
Υ ˜ σ + s 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς     σ , ς C ,   s 0 ,   1 ,
where 𝑗 : C × C .
Strictly fuzzy preinvex mapping if strict inequality holds for Υ ˜ σ Υ ˜ ς . Υ ˜ : C E 0 is considered fuzzy preincave mapping if Υ ˜ is preinvex on C . Strictly fuzzy preincave mapping if strict inequality holds for Υ ˜ σ Υ ˜ ς .
Definition 7.
[27] 𝘍𝘔 Υ ˜ : C E 0 is considered quasi-preinvex on invex set C pertaining to 𝑗 if
Υ ˜ σ + s 𝑗 ς , σ m a x Υ ˜ σ ,   Υ ˜ ς     σ ,   ς C ,   s 0 , 1 .
Definition 8.
[27] . A mapping Υ ˜ : C E 0 is considered fuzzy log-preinvex on invex set C pertaining to bifunction 𝑗 if there exists a positive number ω such that
Υ ˜ σ + s 𝑗 ς , σ Υ ˜ σ 1 s Υ ˜ ς s     σ , ς C ,   s 0 ,   1 ,  
where Υ ˜ . 0 ˜ .
Definition 9.
[34]. The set C α is considered an α -invex set pertaining to arbitrary bifunctions 𝑗 . , . and α . , . , if
σ + s α ς , σ 𝑗 ς , σ C α ,     σ , ς C α ,   s 0 ,   1 ,
where 𝑗 : C α × C α and 𝑗 : C α × C α \ 0 . The α -invex set C α is also called the α 𝑗 -connected set. Note that the convex set with α ς , σ = 1 and 𝑗 ς , σ = ς σ is considered an invex set in the classical sense, but the converse is not valid. For example, in the following set C α = 1 1 2 ,   1 2 , C α is an invex set pertaining to nontrivial bifunction 𝑗 : C α C α C α and α ς , σ = 1 , given as
𝑗 ς , σ = ς σ   f o r   ς > 0 ,   σ > 0   o r   ς < 0 ,   σ < 0 σ ς   f o r   ς > 0 ,   σ < 0   o r   ς 0 ,   σ 0 .
Remark 2.
(i) 
If α ς , σ = 1 , then the set C α is an invex set.
(ii) 
If 0 < α ς , σ < 1 and  𝑗 ς , σ = ς σ , then the set C α is considered star-shaped.
(iii) 
If α ς , σ = 1 and 𝑗 ς , σ = ς σ , then the set C α is considered convex.

3. Strongly α -Preinvex Fuzzy Mappings

Let C α be a nonempty α -invex subset of pertaining to 𝑗 ,   α . Let Υ ˜ : C α E 0 be continuous mapping and 𝑗 : C α × C α be an arbitrary continuous bifunction. Let α : C α × C α \ 0 be a bifunction. We denote ‖ . ‖ and 〈 . ,   . 〉 as the norm and inner product, respectively.
Definition 10.
Let C α be an α -invex set and ω be a positive number. Then 𝘍𝘔 Υ ˜ : C α E 0 is considered strongly α -preinvex pertaining to bifunctions 𝑗 . , . and α . , . if
Υ ˜ σ + s α ς , σ 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2     σ ,   ς C α ,   s 0 ,   1 ,
strictly strongly α -preinvex-𝘍𝘔 if strict inequality holds for Υ ˜ σ Υ ˜ ς and Υ ˜ : C α E 0 is considered strongly fuzzy preincave mapping if Υ ˜ is strongly α -preinvex on C α . Strictly fuzzy preincave mapping if strict inequality holds for Υ ˜ σ Υ ˜ ς .
Remark 3.
Strongly α-preinvex-FMs have some very nice properties similar to fuzzy preinvex mapping,
(1) 
If Υ ˜ is strongly α -preinvex-𝘍𝘔, then Υ Υ ˜ is also strongly α -preinvex for Υ 0 .
(2) 
If Υ ˜ and G ˜ both are strongly α -preinvex-𝘍𝘔s, then m a x Υ ˜ σ , G ˜ σ is also strongly α -preinvex-𝘍𝘔s.
Now we discuss some special cases of strongly α -preinvex-𝘍𝘔s:
If ω = 0 , then strongly α -preinvex-𝘍𝘔 becomes α -preinvex-𝘍𝘔, that is
Υ ˜ σ + s α ς , σ 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ,     σ ,   ς C α ,   s 0 ,   1 .
If α ς , σ = 1 , then strongly α -preinvex-𝘍𝘔 becomes strongly preinvex-𝘍𝘔, that is
Υ ˜ σ + s 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,  
  σ ,   ς C _ α ,   s 0 ,   1
If ω = 0 , then (13) reduces to
Υ ˜ σ + s 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ,     σ ,   ς C α ,   s 0 ,   1 .
The mapping Υ ˜ is considered preinvex-𝘍𝘔.
If 0 < α ς , σ < 1   , then strongly α -preinvex-𝘍𝘔 is considered star-shaped strongly α -preinvex-𝘍𝘔.
If α ς , σ = 1 and 𝑗 ς , σ = ς σ , then strongly α -preinvex-𝘍𝘔 becomes strongly convex-𝘍𝘔, that is
Υ ˜ σ + s ς σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s ς σ 2 ,
  σ ,   ς C α ,   s 0 ,   1
If ω = 0 , then Equation (15) becomes
Υ ˜ σ + s ς σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ,     σ ,   ς C α ,   s 0 ,   1 .
The mapping Υ ˜ is considered convex-𝘍𝘔.
If 0 < α ς , σ < 1   and s = 1 2 , then Equation (11) becomes
Υ ˜ 2 σ + α ς , σ 𝑗 ς , σ 2 Υ ˜ σ + ˜ Υ ˜ ς 2 ˜ ω 1 4 𝑗 ς , σ 2     σ , ς C α .
The mapping Υ ˜ is considered star-shaped J-strongly   α -preinvex-𝘍𝘔.
If s = 1 2 , then (11) becomes
Υ ˜ 2 σ + α ς , σ 𝑗 ς , σ 2 Υ ˜ σ + ˜ Υ ˜ ς 2 ˜ ω 1 4 𝑗 ς , σ 2 ,  
  σ , ς C α .
The 𝘍𝘔 Υ ˜ is considered J-strongly α -preinvex. For α ς , σ = 1 , Equation (16) reduces to
Υ ˜ 2 σ + 𝑗 ς , σ 2 Υ ˜ σ + ˜ Υ ˜ ς 2 ˜ ω 1 4 𝑗 ς , σ 2   ,  
  σ , ς C α . Then 𝘍𝘔 Υ ˜ is considered strongly J-preinvex. When ω = 0 , then Equation (17) becomes
Υ ˜ 2 σ + 𝑗 ς , σ 2 Υ ˜ σ + ˜ Υ ˜ ς 2     σ , ς C α .  
Then 𝘍𝘔 Υ ˜ is considered J-preinvex.
We also define the affine strongly   α -preinvex mapping.
Definition 11.
A mapping Υ ˜ : C α E 0 is considered strongly affine α -preinvex-𝘍𝘔 on α -invex set C α pertaining to bifunction 𝑗 ,   α if there exists a positive number ω such that
Υ ˜ σ + s α ς , σ 𝑗 ς , σ = 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ s 1 s 𝑗 ς , σ 2     σ , ς C α ,   s 0 ,   1 .
If s = 1 2 , then we also say that Υ ˜ is strongly affine J- α -preinvex-𝘍𝘔such that
Υ ˜ 2 σ + α ς , σ 𝑗 ς , σ 2 = Υ ˜ σ + ˜ Υ ˜ ς 2 ˜ 1 4 ω 𝑗 ς , σ 2     σ , ς C .
Theorem 1.
Let C α be an α -invex set pertaining to 𝑗 and let Υ ˜ : C α E 0 be a 𝘍𝘔 parametrized by
Υ ˜ σ = Υ ˜ * σ ,   ĩ , Υ ˜ * σ ,   ĩ , ĩ : ĩ 0 ,   1 ,     σ C α .
Then Υ ˜ is strongly α -preinvex on C α with modulus ω if, and only if, for all ĩ 0 ,   1 , Υ ˜ * σ ,   ĩ and Υ ˜ * σ ,   ĩ are strongly α -preinvex pertaining to 𝑗 ,   α , and modulus ω .
Proof. 
Assume that for each ĩ 0 ,   1 ,   Υ ˜ * σ ,   ĩ and Υ ˜ * σ ,   ĩ are strongly α -preinvex pertaining to 𝑗 ,   α and modulus ω on C α . Then from Equation (21), we have
Υ ˜ * σ + s α ς , σ 𝑗 ς , σ ,   ĩ 1 s Υ ˜ * σ ,   ĩ + s Υ ˜ * ς ,   ĩ ω s 1 s 𝑗 ς , σ 2 ,
  σ , ς C α ,   s 0 ,   1 ,
and
Υ ˜ * σ + s α ς , σ 𝑗 ς , σ ,   ĩ 1 s Υ ˜ * σ ,   ĩ + s Υ ˜ * ς ,   ĩ ω s 1 s 𝑗 ς , σ 2 ,
  σ , ς C α ,   s 0 ,   1 .
Then by Equations (21), (1), and (2), we obtain
Υ ˜ σ + s α ς , σ 𝑗 ς , σ = Υ ˜ * σ + s α ς , σ 𝑗 ς , σ ,   ĩ , Υ ˜ * σ + s α ς , σ 𝑗 ς , σ ,   ĩ , ĩ : ĩ 0 ,   1 ,
1 s Υ ˜ * σ ,   ĩ , 1 s Υ ˜ * σ ,   ĩ , ĩ : ĩ 0 ,   1 + ˜ ( s Υ ˜ * ς ,   ĩ , s Υ ˜ * ς ,   ĩ , ĩ : ĩ   0 ,   1 ˜ ω s 1 s 𝑗 ς , σ 2 ,  
= 1 s Υ ˜ σ + ˜ s Υ ˜ σ ˜ ω s 1 s 𝑗 ς , σ 2 .
for all σ , ς C α and s 0 ,   1 . Hence, Υ ˜ is strongly α -preinvex-𝘍𝘔 on C α with modulus ω .
Conversely, let Υ ˜ is strongly α -preinvex-𝘍𝘔 on C α with modulus ω . Then for all σ , ς C α and s 0 ,   1 , we have Υ ˜ σ + s α ς , σ 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 . From Equation (20), we have
Υ ˜ σ + s α ς , σ 𝑗 ς , σ = Υ ˜ * σ + s α ς , σ 𝑗 ς , σ ,   ĩ , Υ ˜ * σ + s α ς , σ 𝑗 ς , σ ,   ĩ , ĩ : ĩ 0 ,   1
  σ , ς C α ,   s 0 ,   1 .
From Equation (20) and Equations (1)–(3), we obtain
1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 = s Υ ˜ * σ ,   ĩ , s Υ ˜ * σ ,   ĩ , ĩ : ĩ 0 ,   1 + ˜ s Υ ˜ * ς ,   ĩ ,   s Υ ˜ * ς ,   ĩ , ĩ : ĩ 0 ,   1 ˜ ω s 1 s 𝑗 ς , σ 2 ,
for all σ , ς C α and s 0 ,   1 . Then by strongly α -preinvexity of Υ ˜ , we have for all σ , ς C α and s 0 ,   1   such that
Υ ˜ * σ + s α ς , σ 𝑗 ς , σ ,   ĩ 1 s Υ ˜ * σ ,   ĩ + s Υ ˜ * ς ,   ĩ ω s 1 s 𝑗 ς , σ 2 ,
And
Υ ˜ * σ + s α ς , σ 𝑗 ς , σ ,   ĩ 1 s Υ ˜ * σ ,   ĩ + s Υ ˜ * ς ,   ĩ ω s 1 s 𝑗 ς , σ 2 ,
for each ĩ 0 ,   1 . Hence, the result follows. □
Example 1.
We consider the𝘍𝘔s Υ ˜ : 0 ,   E 0 defined by,
Υ ˜ σ σ = σ σ 2 ,   σ 0 ,   σ 2 2 σ 2 σ σ 2 ,   σ σ 2 ,   2 σ 2   0   ,   o t h e r w i s e ,
Then, for each ĩ 0 ,   1 , we have Υ ˜ ĩ σ = ĩ σ 2 , 2 ĩ σ 2 . Since endpoint functions Υ ˜ * ĩ ,   Υ ˜ * ĩ are strongly generalized preinvex for each ĩ 0 , 1 , then Υ ˜ is strongly generalized preinvex-𝘍𝘔pertaining to
𝑗 ς , σ = ς σ   and   α ς , σ = 1 ,
and  ω > 0   .
We now establish a result for strongly α -preinvex-𝘍𝘔, which shows that the difference of strongly α -preinvex-𝘍𝘔 and strong affine α -preinvex-𝘍𝘔 is again a strongly α -preinvex-𝘍𝘔.
Theorem 2.
Let𝘍𝘔 g ˜ : C α E 0 be a strongly affine α -preinvex pertaining to 𝑗 ,   α and ω > 0 . Then Υ ˜ is strongly α -preinvex-𝘍𝘔 pertaining to the same 𝑗 ,   α if, and only if, G ˜ = Υ ˜ ˜ g ˜ is α -preinvex-𝘍𝘔 pertaining to 𝑗 ,   α .
Proof. 
The “If” part is obvious. To prove the “only if”, assume that g ˜ : C E 0 is a strongly affine α -preinvex-𝘍𝘔 pertaining to 𝑗 ,   α and ω > 0 . Then
g ˜ σ + s α ς , σ 𝑗 ς , σ = 1 s g ˜ σ + ˜ s g ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2
Since Υ ˜ is strongly α -preinvex-𝘍𝘔 pertaining to the same 𝑗 ,   α , then
Υ ˜ σ + s α ς , σ 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,
From Equations (22) and (23), we have
Υ ˜ σ + s α ς , σ 𝑗 ς , σ ˜ g ˜ σ + s α ς , σ 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ 1 s g ˜ σ ˜ s g ˜ ς ,
= 1 s Υ ˜ σ ˜ g ˜ σ + ˜ s Υ ˜ ς ˜ g ˜ ς ,
from which it follows that
G ˜ σ + s α ς , σ 𝑗 ς , σ = Υ ˜ σ + s α ς , σ 𝑗 ς , σ ˜ g ˜ σ + s α ς , σ 𝑗 ς , σ ,
1 s Υ ˜ σ ˜ g ˜ σ + ˜ s Υ ˜ ς ˜ g ˜ ς ,
= 1 s G ˜ σ + ˜ s G ˜ σ ,
Showing that G ˜ = Υ ˜ ˜ g ˜   is strongly α -preinvex-𝘍𝘔. □
Definition 12.
A𝘍𝘔 Υ ˜ : C α E 0 is considered strongly quasi α -preinvex on α -invex set C α pertaining to 𝑗 ,   α if there exists a positive number ω such that
Υ ˜ σ + s α ς , σ 𝑗 ς , σ max Υ ˜ σ ,   Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,
  σ , ς C α ,   s 0 ,   1 .
Similarly, A 𝘍𝘔 Υ ˜ is considered strongly quasi-preincave if Υ ˜ is strongly quasi α -preinvex on C α .
If   α ς , σ = 1 , then we get the definition of strong quasi-preinvex-𝘍𝘔, that is
Υ ˜ σ + s 𝑗 ς , σ max Υ ˜ σ ,   Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,
  σ , ς C α ,   s 0 ,   1 .
If α ς , σ = 1 and ω = 0 , then we get the definition of quasi-preinvex-𝘍𝘔 in the classical sense, that is
Υ ˜ σ + s 𝑗 ς , σ max Υ ˜ σ ,   Υ ˜ ς ,   σ , ς C α ,   s 0 ,   1 .
Theorem 3.
Let𝘍𝘔 Υ ˜ : C E 0  be a strongly α -preinvex and ω > 0 , such that Υ ˜ ς Υ ˜ σ . Then Υ ˜ is strictly strongly quasi α -preinvex-𝘍𝘔.
Proof. 
Let Υ ˜ ς Υ ˜ σ and Υ ˜ be strongly α -preinvex-𝘍𝘔. Then, for all σ , ς C α and s 0 ,   1 we have
Υ ˜ σ + s α ς , σ 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,
since Υ ˜ ς Υ ˜ σ , we have
Υ ˜ σ + s α ς , σ 𝑗 ς , σ Υ ˜ σ ˜ ω s 1 s 𝑗 ς , σ 2 ,
Hence, Υ ˜ is strictly strongly quasi α -preinvex-𝘍𝘔 with ω > 0 .
Theorem 4.
Let C α be a α -invex set pertaining to 𝑗 ,   α and let Υ ˜ : C α E 0 be a 𝘍𝘔 parametrized by
Υ ˜ σ = Υ ˜ * σ ,   ĩ , Υ ˜ * σ ,   ĩ , ĩ : ĩ 0 ,   1 ,     σ C α .
Then Υ ˜ is strongly quasi α -preinvex on C α with modulus ω if, and only if, for all ĩ 0 ,   1 ,
Υ ˜ * σ ,   ĩ and Υ ˜ * σ ,   ĩ are strongly quasi α -preinvex pertaining to 𝑗 and modulus ω .
Proof. 
The demonstration is analogous to the demonstration of Theorem 1. □
Definition 13.
A𝘍𝘔 Υ ˜ : C α E 0 is considered strongly log α -preinvex on α -invex set C α pertaining to bifunctions 𝑗 ,   α , if there exists a positive number ω such that
Υ ˜ σ + s α ς , σ 𝑗 ς , σ Υ ˜ σ 1 s Υ ˜ ς s ˜ ω s 1 s 𝑗 ς , σ 2   ,
  σ , ς C α ,   s 0 ,   1 ,   where   Υ ˜ . 0 ˜ .
Similarly, A 𝘍𝘔 Υ ˜ is considered strongly log α -preincave if Υ ˜ is strongly log α -preinvex on C α .
If   α ς , σ = 1 , then we get the definition of log preinvex-𝘍𝘔, that is
Υ ˜ σ + s 𝑗 ς , σ Υ ˜ σ 1 s Υ ˜ ς s ˜ ω s 1 s 𝑗 ς , σ 2 .
  σ , ς C α ,   s 0 ,   1 , where Υ ˜ . 0 ˜ . The mapping Υ ˜ is strongly log-preinvex-𝘍𝘔 pertaining to ,   α , .
If α ς , σ = 1 and ω = 0 , then we get the definition of log-preinvex-𝘍𝘔 in the classical sense, that is
Υ ˜ σ + s α ς , σ 𝑗 ς , σ Υ ˜ σ 1 s Υ ˜ ς s .
  σ , ς C α ,   s 0 ,   1 , where Υ ˜ . 0 ˜ . The mapping Υ ˜ is log-preinvex-𝘍𝘔 pertaining to 𝑗 ,   α .
From Definition 13, we have
Υ ˜ σ + s α ς , σ 𝑗 ς , σ Υ ˜ σ 1 s Υ ˜ ς s ˜ ω s 1 s 𝑗 ς , σ 2 ,
1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,
max Υ ˜ σ ,   Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 .
It can easily be seen that strongly log α -preinvex-𝘍𝘔   strongly α -preinvex-𝘍𝘔 strongly quasi α -preinvex-𝘍𝘔.
For s = 1 , Definition 10 and Definition 13, reduces to:
Condition A.
Υ ˜ σ + α ς , σ 𝑗 ς , σ Υ ˜ ς   for   all   σ , ς C α .
Which plays an important role in studying the properties of α -preinvex-𝘍𝘔s and 𝛼-invex-𝘍𝘔s. If α ς , σ = 1 , then Condition A reduces to the following for preinvex-𝘍𝘔s.
Condition B.
Υ ˜ σ + 𝑗 ς , σ Υ ˜ ς   for   all   σ , ς C α .
For the applications of Condition B, see [28,30,34,62].
Definition 14.
A𝘍𝘔 Υ ˜ : C α E 0 is considered pseudo α -preinvex on the α -invex set C α if there exists a strictly positive bifunction b . , . such that
Υ ˜ ς Υ ˜ σ Υ ˜ σ + s α ς , σ 𝑗 ς , σ Υ ˜ σ + ˜ s s 1 b σ , ς ,   for   all   , ς C α , t 1 ,   0 .
Theorem 5.
Let Υ ˜ be a strongly α -preinvex-𝘍𝘔 on C α such that Υ ˜ ς Υ ˜ σ . Then Υ ˜ is strongly pseudo α -preinvex-𝘍𝘔.
Proof. 
Let Υ ˜ ς Υ ˜ σ and Υ ˜ be a strongly α -preinvex-𝘍𝘔. Then
Υ ˜ σ + s α ς , σ 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,   for   all   σ , ς C α , t 1 , 0
= Υ ˜ σ + ˜ s Υ ˜ ς ˜ Υ ˜ σ ˜ ω s 1 s 𝑗 ς , σ 2 ,
Υ ˜ σ + ˜ s s 1 Υ ˜ σ ˜ Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,
= Υ ˜ σ + ˜ s s 1 b σ , ς ˜ ω s 1 s 𝑗 ς , σ 2 ,
where b σ , ς = Υ ˜ σ ˜ Υ ˜ ς . This prove that Υ ˜ is strongly pseudo α -preinvex-𝘍𝘔. □

4. G-Differentiable Strongly α -Preinvex Fuzzy Mappings

In this section, we propose the concepts of strongly α 𝑗 -invex-𝘍𝘔s and strongly α 𝑗 -monotone fuzzy operators. With the help of these ideas, different properties of strongly α -preinvex-𝘍𝘔s are characterized. At the end, it is proved that the minimum of strongly α -preinvex-𝘍𝘔s can be distinguished by strongly fuzzy α -variational-like inequalities.
Definition 15.
The G-differentiable 𝘍𝘔 Υ ˜ : C α E 0 on α -invex set C α is considered strongly α -invex pertaining to 𝑗 ,   α if there exists a constant ω > 0 such that
Υ ˜ ς ˜ Υ ˜ σ α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 ,
for all σ , ς C α , where Υ ˜ , , is G-differentiable of Υ ˜ at σ .
From Definition 15, it enables us to define the following new definitions:
Definition 16.
The G-differentiable 𝘍𝘔 Υ ˜ : C α E 0 on C α is considered α -invex pertaining to 𝑗 ,   α , if there exists a constant ω > 0 such that
Υ ˜ ς ˜ Υ ˜ σ α ς , σ Υ ˜ , σ ,   𝑗 ς , σ ,
for all σ , ς C α , where Υ ˜ , , is G-differentiable of Υ ˜ at σ .
Definition 17.
The G-differentiable 𝘍𝘔 Υ ˜ : C α E 0 on C α is considered strongly pseudo α -invex if there exists a constant ω > 0 such that
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 0 ˜ Υ ˜ ς ˜ Υ ˜ σ 0 ˜ ,
for all σ , ς C α .
Definition 18.
The G-differentiable 𝘍𝘔 Υ ˜ : C α E 0 on C α is considered pseudo α 𝑗 -invex if there exists a constant ω > 0 such that
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ 0 ˜ Υ ˜ ς ˜ Υ ˜ σ 0 ˜ ,
for all σ , ς C α .
Definition 19.
The G-differentiable 𝘍𝘔 Υ ˜ : C α E 0 on C α is considered strongly quasi α 𝑗 -invex if there exists a constant ω > 0 such that
Υ ˜ ς Υ ˜ σ α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 0 ˜ ,
for all σ , ς C α .
Definition 20.
The G-differentiable 𝘍𝘔 Υ ˜ : C α E 0 on C α is considered quasi   α 𝑗 -invex if there exists a constant ω > 0 such that
Υ ˜ ς Υ ˜ σ α ς , σ Υ ˜ , σ ,   𝑗 ς , σ 0 ˜ ,
for all σ , ς C α .
If 𝑗 ς , σ = 𝑗 σ , ς , then the Definitions 15–20 reduce to known ones. These definitions may play an important role in the fuzzy optimization problem and mathematical programming.
We need the following assumption regarding the bifunctions 𝑗 , α , which play an important role in the G-differentiation of the main results.
Condition C
[34]
𝑗 ς , σ + s α ς , σ 𝑗 ς , σ = 1 s 𝑗 ς , σ ,
𝑗 σ , σ + s α ς , σ 𝑗 ς , σ = s 𝑗 ς , σ ,   for   all   σ ,   ς C α , s 0 ,   1 .
Clearly for s = 0 , we have 𝑗 σ , σ = 0 for all σ C α .
It is well known that each G-differentiable preinvex-𝘍𝘔 is invex-𝘍𝘔, but to prove its converse, we need a special condition.
It can easily be seen that if α ς , σ = 1 , then Condition C collapses to the following condition:
Condition D
[27]
𝑗 ς , σ + s 𝑗 ς , σ = 1 s 𝑗 ς , σ ,
𝑗 σ , σ + s 𝑗 ς , σ = s 𝑗 ς , σ ,   for   all   σ ,   ς C α , s 0 ,   1 .
For the applications of Condition D, see [29,30,31,77,78].
Theorem 6.
Let Υ ˜ : C α E 0 be a G-differentiable strongly α -preinvex-𝘍𝘔 pertaining to 𝑗 ,   α . Let Condition C hold and α σ , w = α ς , w for all σ ,   ς ,   w C α . Then Υ ˜ is strongly α -preinvex-𝘍𝘔 when, and only when, Υ ˜ is strongly α-invex-𝘍𝘔.
Proof. 
Let Υ ˜ : C α E 0 be G-differentiable α -preinvex-𝘍𝘔. Since Υ ˜ is α -preinvex, then for each σ , ς C α and t 1 , 0 , we have
Υ ˜ σ + s α ς , σ 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,
= Υ ˜ σ + ˜ s Υ ˜ ς ˜ Υ ˜ σ ˜ ω s 1 s 𝑗 ς , σ 2 ,
which implies that
s Υ ˜ ς ˜ Υ ˜ σ Υ ˜ σ + s α ς , σ 𝑗 ς , σ ˜ Υ ˜ σ + ˜ ω s 1 s 𝑗 ς , σ 2 ,
Υ ˜ ς ˜ Υ ˜ σ Υ ˜ σ + s α ς , σ 𝑗 ς , σ ˜ Υ ˜ σ s + ˜ ω 1 s 𝑗 ς , σ 2 ,
taking the limit in the above inequality as s 0 , we have
  Υ ˜ ς ˜ Υ ˜ σ α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 .
Conversely, let Υ ˜ be a 𝛼-invex-𝘍𝘔. Since C α is an α -invex set, we have, ς s = σ + s α ς , σ 𝑗 ς , σ C α for all σ , ς C α and t 1 , 0 . Taking ς = ς s in (29), we get
Υ ˜ ς s ˜ Υ ˜ σ α ς s , σ Υ ˜ , σ ,   𝑗 ς s , σ + ˜ ω 𝑗 ς s , σ 2 ,
using Condition C, we have
Υ ˜ ς s ˜ Υ ˜ σ α ς s , σ Υ ˜ , σ ,   𝑗 ς s , σ + ˜ ω 1 s 2 𝑗 ς , σ 2 .
In a similar way, we have
Υ ˜ σ ˜ Υ ˜ ς s   α σ , ς s Υ ˜ , σ , 𝑗 σ , ς s
= s α ς , ς s   Υ ˜ , σ , 𝑗 ς , σ + ˜ ω s 2 𝑗 ς , σ 2
Multiplying (35) by s and (36) by 1 s , and adding the resultant, we have
Υ ˜ ς s 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,
which implies that
Υ ˜ σ + s α ς , σ 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,   for   all   σ ,   ς C α .
Hence, Υ ˜ is strongly α -preinvex-𝘍𝘔 pertaining to 𝑗 ,   α . □
Theorem 7.
Let Υ ˜ be a G-differentiable𝘍𝘔 on C α . If the 𝘍𝘔 Υ ˜ is strongly 𝛼-invex, then
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ α σ , ς Υ ˜ , ς ,   𝑗 σ , ς ˜ ω 𝑗 ς , σ 2 + 𝑗 ς , σ 2 ,
for   all   σ ,   ς C α .
Conversely, if Conditions A and C hold, and α ς , σ = α σ , ς for all σ ,   ς C α , then Υ ˜ is strongly 𝛼-invex-𝘍𝘔 pertaining to 𝑗 ,   α .
Proof. 
Let Υ ˜ is strongly 𝛼-invex-𝘍𝘔. Then,
Υ ˜ ς ˜ Υ ˜ σ α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 ,   for   all   σ , ς C α ,
replacing ς by σ and σ by ς in Equation (38), we get
Υ ˜ σ ˜ Υ ˜ ς α σ , ς Υ ˜ , ς ,   𝑗 σ , ς + ˜ ω 𝑗 ς , σ 2 ,   for   all   σ , ς C α .
Adding Equations (38) and (39), we have
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ α σ , ς Υ ˜ , ς ,   𝑗 σ , ς ˜ ω 𝑗 ς , σ 2 + 𝑗 ς , σ 2 ,   for   all   σ , ς C α .
Conversely, assume that (37) holds. Then
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ ˜ α σ , ς Υ ˜ , ς ,   𝑗 σ , ς ˜ ω 𝑗 ς , σ 2 + 𝑗 ς , σ 2 ,   for   all   σ , ς C α ,
which implies that
Υ ˜ , σ ,   𝑗 ς , σ ˜ Υ ˜ , ς ,   𝑗 σ , ς ˜ ω ˜ 𝑗 ς , σ 2 + 𝑗 ς , σ 2 ,
since α ς , σ = α σ , ς , where ω ˜ = ω α ς , σ .
Since C α is an α -invex set, we have, ς s = σ + s α ς , σ 𝑗 ς , σ C α for all σ , ς C α and t 1 , 0 . Taking ς = ς s in (40), we get
Υ ˜ , ς s ,   𝑗 σ ,   ς s ˜ Υ ˜ , σ ,   𝑗 ς s , σ ˜ ω ˜ 𝑗 ς s , σ 2 + 𝑗 σ , ς s 2 ,
by using Condition C, we have
Υ ˜ , σ + s α ς , σ 𝑗 ς , σ , s 𝑗 ς , σ Υ ˜ , σ , s 𝑗 ς , σ + ˜ 2 ω ˜ s 2 𝑗 ς , σ 2 ,
Let
h ˜ s = Υ ˜ σ + s α ς , σ 𝑗 ς , σ ,
taking G-derivative pertaining to s , we get
h ˜ , s = α ς , σ Υ ˜ , σ + s α ς , σ 𝑗 ς , σ , 𝑗 ς , σ ,
from which, using Equation (41), we have
h ˜ , s α ς , σ Υ ˜ , σ , 𝑗 ς , σ + ˜ 2 ω ˜ α ς , σ s 𝑗 ς , σ 2 ,
= α ς , σ Υ ˜ , σ , 𝑗 ς , σ + ˜ 2 ω s 𝑗 ς , σ 2 .
Integrating Equation (42) between 0 to1 pertaining to s , we get
h ˜ 1 ˜ h ˜ 0 α ς , σ Υ ˜ , σ , 𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 ,
which implies that
Υ ˜ σ + α ς , σ 𝑗 ς , σ ˜ Υ ˜ σ α ς , σ Υ ˜ , σ , 𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 ,
by using Condition, A
Υ ˜ ς ˜ Υ ˜ σ α ς , σ Υ ˜ , σ , 𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 ,   for   all   σ ,   ς C α .
Showing that Υ ˜ is α -invex-𝘍𝘔 on C α .
With Theorem 6 and Theorem 7, we have the following new definitions.
Definition 21.
A G-differentiable mapping Υ ˜ : C α E 0 is considered:
(i) 
Strongly α 𝑗 -monotone fuzzy operator when, and only when, there exists a constant ω > 0 such that
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ α ς , σ Υ ˜ , ς ,   𝑗 σ , ς ˜ ω 𝑗 ς , σ 2 + 𝑗 ς , σ 2 ,
f o r   a l l   σ ,   ς C α .
(ii) 
α 𝑗 -monotone fuzzy operator when, and only when, we have
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ Υ ˜ , ς ,   𝑗 σ , ς 0 ˜   f o r   a l l   σ ,   ς C α .
(iii) 
Strongly α 𝑗 -pseudomonotone fuzzy operator when, and only when, there exists a constant ω > 0 such that
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 + 𝑗 ς , σ 2 0 ˜     ˜ α σ , ς Υ ˜ , ς ,   𝑗 σ , ς 0 ˜ ,    
f o r   a l l   σ ,   ς C α .
(iv) 
Strongly relaxed α 𝑗 -pseudomonotone fuzzy operator when, and only when, there exists a constant ω > 0 such that
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ 0 ˜ ˜ α σ , ς Υ ˜ , ς ,   𝑗 σ , ς ˜ ω 𝑗 ς , σ 2 + 𝑗 ς , σ 2 0 ˜ ,  
f o r   a l l   σ ,   ς C α
(v) 
Strictly α 𝑗 -monotone fuzzy operator when, and only when, we have
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ α σ , ς Υ ˜ , ς ,   𝑗 σ , ς 0 ˜ ,   f o r   a l l   σ ,   ς C α .
(vi) 
α 𝑗 -pseudomonotone fuzzy operator when, and only when, there exists a constant ω > 0 such that
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ 0 ˜     α σ , ς Υ ˜ , ς ,   𝑗 σ , ς 0 ˜ ,   f o r   a l l   σ ,   ς C α .
(vii) 
Quasi α 𝑗 -pseudomonotone fuzzy operator when, and only when, there exists a constant ω > 0 such that
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ > 0 ˜     α σ , ς Υ ˜ , ς ,   𝒿 σ , ς 0 ˜ ,   f o r   a l l   σ ,   ς C α .
(viii) 
Strictly α 𝑗 -pseudomonotone fuzzy operator when, and only when, there exists a constant ω > 0 such that
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ 0 ˜     α σ , ς Υ ˜ , ς ,   𝑗 σ , ς 0 ˜ ,   f o r   a l l   σ ,   ς C α .
If 𝑗 ς , σ = 𝑗 σ , ς , then Definition 21, reduce to new one.
As special case of Theorem 7, we have the following:
Corollary 1.
Let Υ ˜ be G-differentiable 𝘍𝘔 on C α and let Condition C hold. Then Υ ˜ is strongly α -invex-𝘍𝘔 if, and only if, Υ ˜ , is strongly α 𝑗 -monotone fuzzy operator.
Theorem 8.
Let G-differential Υ ˜ , of mapping Υ ˜ on C α be strongly α 𝑗 -pseudomonotone fuzzy operator, and let Conditions A and C hold. Then Υ ˜ is a strongly pseudo α 𝑗 -invex-𝘍𝘔.
Proof. 
Let Υ ˜ , be a strongly   α 𝑗 -pseudomonotone fuzzy operator. Then for all σ ,   ς C , we have
α ς ,   σ Υ ˜ , σ ,   𝑗 ς , σ ω 𝑗 ς , σ 2 ,
Then
˜ α σ , ς Υ ˜ , ς ,   𝑗 σ , ς 0 ˜ ,
which implies that
˜ Υ ˜ , ς ,   𝑗 σ , ς 0 ˜
since C α is an α -invex set so we have, ς s = σ + s α ς ,   σ 𝑗 ς , σ C α for all σ , ς C α and t 1 , 0 . Taking ς = ς s in (4.15), we get
˜ Υ ˜ , σ + s α ς ,   σ 𝑗 ς , σ ,   𝑗 σ ,   σ + s α ς ,   σ 𝑗 ς , σ 0 ˜ ,
by using Condition C, we have
Υ ˜ , σ + s α ς ,   σ 𝑗 ς , σ , 𝑗 ς , σ 0 ˜ ,
assume that
H ˜ s = Υ ˜ σ + s α ς ,   σ 𝑗 ς , σ ,
Taking G-derivative pertaining to s , then using (44), we have
H ˜ , s = α ς ,   σ Υ ˜ , σ + s α ς ,   σ 𝑗 ς , σ , 𝑗 ς , σ 0 ˜ ,
Integrating Equation (44) between 0 and 1 pertaining to s , we get
H ˜ 1 ˜ H ˜ 0 0 ˜ ,
Υ ˜ σ + α ς ,   σ 𝑗 ς , σ ˜ Υ ˜ σ 0 ˜ ,
By using Condition A, we have
Υ ˜ ς ˜ Υ ˜ σ 0 ˜ ,   for   all   σ , ς C α .
Hence, Υ ˜ is a strongly pseudo α 𝑗 -invex-𝘍𝘔. □
Following results are special cases of Theorem 8, we have:
Corollary 2.
Let G-differential Υ ˜ , of 𝘍𝘔 Υ ˜ on C α be α 𝑗 -pseudomonotone fuzzy operator. Then, Υ ˜ is a pseudo α 𝑗 -invex-𝘍𝘔.
Corollary 3.
Let G-differential Υ ˜ , of 𝘍𝘔 Υ ˜ on C α be strongly quasi α 𝑗 -pseudomonotone fuzzy operator. Then Υ ˜ is a strongly quasi α 𝑗 -invex-𝘍𝘔.
Corollary 4.
Let G-differential Υ ˜ , of 𝘍𝘔 Υ ˜ on C α be quasi α 𝑗 -pseudomonotone fuzzy operator, and let Condition C hold. Then Υ ˜ is a pseudo α 𝑗 -invex-𝘍𝘔.
We now discuss the fuzzy optimality condition for G-differentiable strongly α -preinvex-𝘍𝘔s, which is main motivation of our next result.
Theorem 9.
Let Υ ˜ be a G-differentiable strongly α -preinvex-𝘍𝘔 modulus ω > 0 . If σ C α is the minimum of the Υ ˜ , then
Υ ˜ ς ˜ Υ ˜ σ ω 𝑗 ς , σ 2 ,   for   all   σ , ς C α .
Proof. 
Let σ C α be a minimum of Υ ˜ . Then
Υ ˜ σ Υ ˜ ς
for all ς C α .
Since C α is an α -invex set, for all σ ,   ς C α , s 0 , 1 ,
ς s = σ + s α ς , σ 𝑗 ς , σ C α
Taking ς = ς s in (47), we get
0 ˜ Υ ˜ σ + s α ς , σ 𝑗 ς , σ ˜ Υ ˜ σ s ,
taking limit in the above inequality as s , we get
0 ˜ α ς , σ Υ ˜ , σ ,   𝑗 ς , σ ,
since Υ ˜ : C α E 0 is a G-differentiable strongly α -preinvex-𝘍𝘔, so
Υ ˜ σ + s α ς , σ 𝑗 ς , σ 1 s Υ ˜ σ + ˜ s Υ ˜ ς ˜ ω s 1 s 𝑗 ς , σ 2 ,
Υ ˜ ς ˜ Υ ˜ σ Υ ˜ σ + s α ς , σ 𝑗 ς , σ ˜ Υ ˜ σ s + ˜ ω 1 s 𝑗 ς , σ 2 ,
Again, taking limit in the above inequality as s 0 , we get
Υ ˜ ς ˜ Υ ˜ σ α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ ω 1 s 𝑗 ς , σ 2 ,
from which, using Equation (48), we have
Υ ˜ ς ˜ Υ ˜ σ ω 𝑗 ς , σ 2 .
Hence, the result follows. □
Theorem 10.
Let Υ ˜ be a G-differentiable strongly α -preinvex-𝘍𝘔 modulus ω > 0 , and
α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 0 ˜ , for   all   σ , ς C α ,
then σ C α is the minimum of the 𝘍𝘔 Υ ˜ .
Proof. 
Let Υ ˜ : C α E 0 be a G-differentiable strongly α -preinvex-𝘍𝘔 and σ C α satisfies Equation (29), we have
Υ ˜ ς ˜ Υ ˜ σ α ς , σ Υ ˜ , σ ,   𝑗 ς , σ + ˜ ω 𝑗 ς , σ 2 ,
from which, using Equation (32), we have
Υ ˜ ς ˜ Υ ˜ σ 0 ˜ ,
which implies that
Υ ˜ ς Υ ˜ σ
Remark 4.
The inequality of the type Equation (49) is considered strongly variational-like inequality. We would like to emphasize that the optimality conditions of the strongly α -preinvex-𝘍𝘔 can be characterized by the following inequality
Υ ˜ , σ ,   𝑗 ς , σ 0 ˜ , for   all   σ , ς C α ,
which is considered a variational-like inequality.

5. Conclusions

In this paper, we generalized the concepts of convex-𝘍𝘔s and preinvex-𝘍𝘔s pertaining to 𝑗 , α , which is called strongly α -preinvex-𝘍𝘔s pertaining to 𝑗 , α . It is shown that strongly convex-𝘍𝘔s and strongly preinvex-𝘍𝘔s are special cases of strongly α -preinvex-𝘍𝘔s. Under certain conditions, it is also proved that differential strongly α -preinvex-𝘍𝘔s are strongly α -invex-𝘍𝘔s and vice versa. It is also proved that the minimum of strongly α -preinvex-𝘍𝘔s can be characterized by strong α -variational-like inequalities and α -variational-like inequalities. This idea in fuzzy convex and nonconvex theory needs to be studied more thoroughly. Furthermore, multiobjective fuzzy optimization has large and significant applications. In the future, we will try to explore this concept for integral inequalities by using fuzzy Reimann and fuzzy Reimann–Liouville fractional integrals.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, M.A.N. and M.S.S.; formal analysis, G.S.-G.; investigation, M.A.N.; resources, M.B.K.; data curation, M.S.S.; writing—original draft preparation, M.B.K., G.S.-G. and M.S.S.; writing—review and editing, M.B.K.; visualization, M.S.S.; supervision, M.B.K. and M.A.N.; project administration, M.B.K.; funding acquisition, G.S.-G. All authors have read and agreed to the published version of the manuscript.

Funding

The research of Santos-García was funded by the project ProCode-UCM (PID2019-108528RB-C22) from the Spanish Ministerio de Ciencia e Innovación.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 1966, 7, 2–75. [Google Scholar]
  2. Karamardian, S. The nonlinear complementarity problem with applications, Part 2. J. Optim. Theory Appl. 1969, 4, 167–181. [Google Scholar] [CrossRef]
  3. Zhao, Y.X.; Wang, S.Y.; Coladas Uria, L. Characterizations of r-convex functions. J. Optim. Theory Appl. 2010, 145, 186–195. [Google Scholar] [CrossRef]
  4. Qu, G.; Li, N. On the exponentially stability of primal-dual gradient dynamics. IEEE Control. Syst. Lett. 2019, 3, 43–48. [Google Scholar] [CrossRef] [Green Version]
  5. Nikodem, K.; Pales, Z.S. Characterizations of inner product spaces by strongly convex functions. Banach J. Math. Anal. 2011, 1, 83–87. [Google Scholar] [CrossRef]
  6. Adamek, M. On a problem connected with strongly convex functions. Math. Inequalities Appl. 2016, 19, 1287–1293. [Google Scholar] [CrossRef] [Green Version]
  7. Akhiezer, N.I. The Classical Moment Problem and Some Related Questions in Analysis; Oliver and Boyd: Edinburgh, UK, 1965. [Google Scholar]
  8. Angulo, H.; Gimenez, J.; Moeos, A.M. On strongly h-convex functions. Ann. Funct. Anal. 2011, 2, 85–91. [Google Scholar] [CrossRef]
  9. Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite-Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
  10. Awan, M.U.; Noor, M.A.; Mishra, V.N.; Noor, K.I. Some characterizations of general preinvex functions. Int. J. Anal. Appl. 2017, 15, 46–56. [Google Scholar]
  11. Awan, M.U.; Noor, M.A.; Set, E. On strongly (p, h)-convex functions. TWMS J. Pure Appl. Math. 2019, 10, 81–94. [Google Scholar]
  12. Azcar, A.; Gimnez, J.; Nikodem, K. On strongly midconvex functions. Opusc. Math. 2011, 31, 15–26. [Google Scholar] [CrossRef]
  13. Jovanovic, M.V. A note on strongly convex and strongly quasiconvex functions. Math. Notes 1966, 60, 584–585. [Google Scholar] [CrossRef]
  14. Zhao, T.-H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.-M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  15. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
  16. Zhao, T.-H.; Wang, M.-K.; Hai, G.-J.; Chu, Y.-M. Landen inequalities for Gaussian hypergeometric function. Rev. Real Acad. Cienc. Exactas Físicas Naturales. Ser. A Mat. 2022, 116, 1–23. [Google Scholar] [CrossRef]
  17. Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  18. Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  19. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.-M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  20. Jin, F.; Qian, Z.-S.; Chu, Y.-M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
  21. Wang, F.-Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.-M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051-34. [Google Scholar] [CrossRef]
  22. Zhao, T.-H.; Bhayo, B.A.; Chu, Y.-M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  23. Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some Novel Inequalities for LR-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Math. Meth. Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
  24. Khan, M.B.; Macías-Díaz, J.E.; Treanta, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
  25. Khan, M.B.; Noor, M.A.; Macías-Díaz, J.E.; Soliman, M.S.; Zaini, H.G. Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation. Demonstr. Math. 2022, 55, 387–403. [Google Scholar] [CrossRef]
  26. Ben-Isreal, A.; Mond, B. What is invexity? Anziam J. 1986, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
  27. Mohan, M.S.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
  28. Noor, M.A. Variational-like inequalities. Optimization 1994, 30, 323–330. [Google Scholar] [CrossRef]
  29. Noor, M.A.; Noor, K.I. On strongly generalized preinvex functions. J. Inequalities Pure Appl. Math. 2005, 6, 102. [Google Scholar]
  30. Noor, M.A.; Noor, K.I. Some characterization of strongly preinvex functions. J. Math. Anal. Appl. 2006, 316, 697–706. [Google Scholar] [CrossRef] [Green Version]
  31. Noor, M.A.; Noor, K.I. Generalized preinvex functions and their properties. Int. J. Stoch. Anal. 2006, 2006, 12736. [Google Scholar] [CrossRef] [Green Version]
  32. Noor, M.A.; Noor, K.I.; Mohsen, B.B.; Rassias, M.T.; Raigorodskii, A. General preinvex functions and variational-like inequalities. In Approximation and Computation in Science and Engineering; Daras, N.J., Rassias, T.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 643–666. [Google Scholar]
  33. Noor, M.A.; Noor, K.I.; Rassias, M.T. New trends in general variational inequalities. Acta Appl. Math. 2020, 170, 981–1064. [Google Scholar] [CrossRef]
  34. Jeyakumar, V.; Mond, B. On generalized convex mathematical programming. Anziam J. 1992, 34, 43–53. [Google Scholar]
  35. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
  36. Noor, M.A.; Noor, K.I.; Awan, M.U. On Hermite-Hadamard inequalities for h-preinvex functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
  37. Noor, M.A.; Noor, K.I.; Iftikhar, S. Integral inequalities for differentiable harmonic preinvex functions(survey). J. Inequalities Pure Appl. Math. 2016, 7, 3–19. [Google Scholar]
  38. Weir, T.; Mond, B. Preinvex functions in multiobjective optimization. J. Math. Anal. Appl. 1986, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
  39. Yang, X.M.; Yang, Q.; Teo, K.L. Criteria for generalized invex monotonicities. Eur. J. Oper. Res. 2005, 164, 115–119. [Google Scholar] [CrossRef]
  40. Yang, X.M.; Yang, Q.; Teo, K.L. Generalized invexity and generalized invariant monotonicity. J. Optim. Theory Appl. 2003, 117, 607–625. [Google Scholar] [CrossRef]
  41. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  42. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  43. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. Real Acad. Cienc. Exactas Físicas Naturales. Ser. A Mat. 2021, 115, 1–13. [Google Scholar]
  44. Chu, H.-H.; Zhao, T.-H.; Chu, Y.-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  45. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
  46. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  47. Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas Físicas Y Naturales. Ser. A Mat. 2020, 114, 1–14.
  48. Zhao, T.-H.; Zhou, B.-C.; Wang, M.-K.; Chu, Y.-M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef] [Green Version]
  49. Zhao, T.-H.; Wang, M.-K.; Zhang, W.; Chu, Y.-M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  50. Chu, Y.-M.; Zhao, T.-H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
  51. Qian, W.-M.; Chu, H.-H.; Wang, M.-K.; Chu, Y.-M. Sharp inequalities for the Toader mean of order −1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
  52. Zhao, T.-H.; Chu, H.-H.; Chu, Y.-M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
  53. Zhao, T.-H.; Wang, M.-K.; Dai, Y.-Q.; Chu, Y.-M. On the generalized power-type Toader mean. J. Math. Inequal. 2022, 16, 247–264. [Google Scholar] [CrossRef]
  54. Khan, M.B.; Treanțǎ, S.; Alrweili, H.; Saeed, T.; Soliman, M.S. Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Math 2022, 7, 15659–15679. [Google Scholar] [CrossRef]
  55. Khan, M.B.; Alsalami, O.M.; Treanțǎ, S.; Saeed, T.; Nonlaopon, K. New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Math. 2022, 7, 15497–15519. [Google Scholar] [CrossRef]
  56. Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
  57. Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
  58. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
  59. Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–626. [Google Scholar] [CrossRef]
  60. Goetschel, R., Jr.; Voxman, W. Topological properties of fuzzy numbers. Fuzzy Sets Syst. 1983, 10, 87–99. [Google Scholar] [CrossRef]
  61. Furukawa, N. Convexity and local Lipschitz continuity of fuzzy-valued mappings. Fuzzy Sets Syst. 1998, 93, 113–119. [Google Scholar] [CrossRef]
  62. Nanda, S.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  63. Syau, Y.R. On convex and concave fuzzy mappings. Fuzzy Sets Syst. 1999, 103, 163–168. [Google Scholar] [CrossRef]
  64. Yan, H.; Xu, J. A class of convex fuzzy mappings. Fuzzy Sets Syst. 2002, 129, 47–56. [Google Scholar] [CrossRef]
  65. Goetschel, R., Jr.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
  66. Iqbal, S.A.; Hafez, M.G.; Chu, Y.-M.; Park, C. Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J. Appl. Anal. Comput. 2022, 12, 770–789. [Google Scholar] [CrossRef]
  67. Huang, T.-R.; Chen, L.; Chu, Y.-M. Asymptotically sharp bounds for the complete p-elliptic integral of the first kind. Hokkaido Math. J. 2022, 51, 189–210. [Google Scholar] [CrossRef]
  68. Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
  69. Santos-García, G.; Khan, M.B.; Alrweili, H.; Alahmadi, A.A.; Ghoneim, S.S. Hermite–Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator. Mathematics 2022, 10, 2756. [Google Scholar] [CrossRef]
  70. Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
  71. Khan, M.B.; Noor, M.A.; Zaini, H.G.; Santos-García, G.; Soliman, M.S. The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2022, 15, 66. [Google Scholar] [CrossRef]
  72. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  73. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  74. Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex. Intell. Syst. 2022, 8, 413–427. [Google Scholar] [CrossRef]
  75. Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
  76. Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized p-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
  77. Noor, M.A. Fuzzy preinvex functions. Fuzzy Sets Syst. 1994, 64, 95–104. [Google Scholar] [CrossRef]
  78. Syau, Y.R. Preinvex fuzzy mappings. Comput. Math. Appl. 1999, 37, 31–39. [Google Scholar] [CrossRef] [Green Version]
  79. Syau, Y.R.; Lee, E.S. Fuzzy Weirstrass theorem and convex fuzzy mappings. Comput. Math. Appl. 2006, 51, 1741–1750. [Google Scholar] [CrossRef] [Green Version]
  80. Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
  81. Ding, X.P.; Park, J.Y. A new class of generalized nonlinear implicit quasivariational inclusions with fuzzy mappings. J. Comput. Appl. Math. 2002, 138, 243–257. [Google Scholar] [CrossRef]
  82. Stefanini, L.; Bede, B. Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. Theory Methods Appl. 2009, 71, 1311–1328. [Google Scholar] [CrossRef] [Green Version]
  83. Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1980, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
  84. Khan, M.B.; Noor, M.A.; Noor, K.I.; Nisar, K.S.; Ismail, K.A.; Elfasakhany, A. Some Inequalities for LR-(h1, h2)-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Int. J. Comput. Intell. Syst. 2021, 14, 1–15. [Google Scholar] [CrossRef]
  85. Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-Log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. 2021, 15, 459–470. [Google Scholar]
  86. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  87. Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Math. 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
  88. Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
  89. Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
  90. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  91. Liu, Z.-H.; Motreanu, D.; Zeng, S.-D. Generalized penalty and regularization method for differential variational- hemivariational inequalities, SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar]
  92. Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F.; Yao, J.-C.; Zeng, S.-D. Existence of solutions for a class of noncoercive variational–hemivariational inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
  93. Zeng, S.-D.; Migorski, S.; Liu, Z.-H. Well-posedness, optimal control, and sensitivity analysis for a class of differential variational- hemivariational inequalities, SIAM J. Optim. 2021, 31, 2829–2862. [Google Scholar]
  94. Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. Math. Methods Appl. Sci. 2020, 43, 9543–9556. [Google Scholar] [CrossRef]
  95. Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar] [CrossRef] [Green Version]
  96. Liu, Z.-H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Internat. J. Bifur. Chaos Appl. Sci. Eng. 2013, 23, 1350125. [Google Scholar] [CrossRef]
  97. Khalil, S.; Kousar, S.; Kausar, N.; Imran, M.; Oros, G.I. Bipolar Interval-Valued Neutrosophic Optimization Model of Integrated Healthcare System. CMC-Computers. Mater. Contin. 2022, 73, 6207–6224. [Google Scholar]
  98. Valdés, J.N.; Rabossi, F.; Samaniego, A.D. Convex functions: Ariadne’s thread or Charlotte’s spiderweb. Adv. Math. Model. Appl. 2020, 5, 176–191. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics 2022, 10, 3753. https://doi.org/10.3390/math10203753

AMA Style

Khan MB, Santos-García G, Noor MA, Soliman MS. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics. 2022; 10(20):3753. https://doi.org/10.3390/math10203753

Chicago/Turabian Style

Khan, Muhammad Bilal, Gustavo Santos-García, Muhammad Aslam Noor, and Mohamed S. Soliman. 2022. "New Class of Preinvex Fuzzy Mappings and Related Inequalities" Mathematics 10, no. 20: 3753. https://doi.org/10.3390/math10203753

APA Style

Khan, M. B., Santos-García, G., Noor, M. A., & Soliman, M. S. (2022). New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics, 10(20), 3753. https://doi.org/10.3390/math10203753

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop