New Class of Preinvex Fuzzy Mappings and Related Inequalities
Abstract
:1. Introduction
2. Preliminaries
- (a)
- is normal, i.e., there exists such that
- (b)
- for all ,;
- (c)
- sup is compact.
- (i)
- If , then the set is an invex set.
- (ii)
- If and , then the set is considered star-shaped.
- (iii)
- If and then the set is considered convex.
3. Strongly -Preinvex Fuzzy Mappings
- (1)
- If is strongly-preinvex-𝘍𝘔, then is also strongly -preinvex for .
- (2)
- If and both are strongly -preinvex-𝘍𝘔s, then is also strongly -preinvex-𝘍𝘔s.
4. G-Differentiable Strongly -Preinvex Fuzzy Mappings
- (i)
- Strongly -monotone fuzzy operator when, and only when, there exists a constant such that
- (ii)
- -monotone fuzzy operator when, and only when, we have
- (iii)
- Strongly -pseudomonotone fuzzy operator when, and only when, there exists a constant such that
- (iv)
- Strongly relaxed -pseudomonotone fuzzy operator when, and only when, there exists a constant such that
- (v)
- Strictly -monotone fuzzy operator when, and only when, we have
- (vi)
- -pseudomonotone fuzzy operator when, and only when, there exists a constant such that
- (vii)
- Quasi -pseudomonotone fuzzy operator when, and only when, there exists a constant such that
- (viii)
- Strictly -pseudomonotone fuzzy operator when, and only when, there exists a constant such that
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polyak, B.T. Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Sov. Math. Dokl. 1966, 7, 2–75. [Google Scholar]
- Karamardian, S. The nonlinear complementarity problem with applications, Part 2. J. Optim. Theory Appl. 1969, 4, 167–181. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Wang, S.Y.; Coladas Uria, L. Characterizations of r-convex functions. J. Optim. Theory Appl. 2010, 145, 186–195. [Google Scholar] [CrossRef]
- Qu, G.; Li, N. On the exponentially stability of primal-dual gradient dynamics. IEEE Control. Syst. Lett. 2019, 3, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Nikodem, K.; Pales, Z.S. Characterizations of inner product spaces by strongly convex functions. Banach J. Math. Anal. 2011, 1, 83–87. [Google Scholar] [CrossRef]
- Adamek, M. On a problem connected with strongly convex functions. Math. Inequalities Appl. 2016, 19, 1287–1293. [Google Scholar] [CrossRef] [Green Version]
- Akhiezer, N.I. The Classical Moment Problem and Some Related Questions in Analysis; Oliver and Boyd: Edinburgh, UK, 1965. [Google Scholar]
- Angulo, H.; Gimenez, J.; Moeos, A.M. On strongly h-convex functions. Ann. Funct. Anal. 2011, 2, 85–91. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite-Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Mishra, V.N.; Noor, K.I. Some characterizations of general preinvex functions. Int. J. Anal. Appl. 2017, 15, 46–56. [Google Scholar]
- Awan, M.U.; Noor, M.A.; Set, E. On strongly (p, h)-convex functions. TWMS J. Pure Appl. Math. 2019, 10, 81–94. [Google Scholar]
- Azcar, A.; Gimnez, J.; Nikodem, K. On strongly midconvex functions. Opusc. Math. 2011, 31, 15–26. [Google Scholar] [CrossRef]
- Jovanovic, M.V. A note on strongly convex and strongly quasiconvex functions. Math. Notes 1966, 60, 584–585. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.-M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42B, 491–501. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Hai, G.-J.; Chu, Y.-M. Landen inequalities for Gaussian hypergeometric function. Rev. Real Acad. Cienc. Exactas Físicas Naturales. Ser. A Mat. 2022, 116, 1–23. [Google Scholar] [CrossRef]
- Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
- Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.-M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
- Jin, F.; Qian, Z.-S.; Chu, Y.-M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
- Wang, F.-Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.-M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051-34. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Bhayo, B.A.; Chu, Y.-M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some Novel Inequalities for LR-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Math. Meth. Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
- Khan, M.B.; Macías-Díaz, J.E.; Treanta, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Macías-Díaz, J.E.; Soliman, M.S.; Zaini, H.G. Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation. Demonstr. Math. 2022, 55, 387–403. [Google Scholar] [CrossRef]
- Ben-Isreal, A.; Mond, B. What is invexity? Anziam J. 1986, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M.S.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A. Variational-like inequalities. Optimization 1994, 30, 323–330. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I. On strongly generalized preinvex functions. J. Inequalities Pure Appl. Math. 2005, 6, 102. [Google Scholar]
- Noor, M.A.; Noor, K.I. Some characterization of strongly preinvex functions. J. Math. Anal. Appl. 2006, 316, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I. Generalized preinvex functions and their properties. Int. J. Stoch. Anal. 2006, 2006, 12736. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Mohsen, B.B.; Rassias, M.T.; Raigorodskii, A. General preinvex functions and variational-like inequalities. In Approximation and Computation in Science and Engineering; Daras, N.J., Rassias, T.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2022; pp. 643–666. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Rassias, M.T. New trends in general variational inequalities. Acta Appl. Math. 2020, 170, 981–1064. [Google Scholar] [CrossRef]
- Jeyakumar, V.; Mond, B. On generalized convex mathematical programming. Anziam J. 1992, 34, 43–53. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. On Hermite-Hadamard inequalities for h-preinvex functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Iftikhar, S. Integral inequalities for differentiable harmonic preinvex functions(survey). J. Inequalities Pure Appl. Math. 2016, 7, 3–19. [Google Scholar]
- Weir, T.; Mond, B. Preinvex functions in multiobjective optimization. J. Math. Anal. Appl. 1986, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.M.; Yang, Q.; Teo, K.L. Criteria for generalized invex monotonicities. Eur. J. Oper. Res. 2005, 164, 115–119. [Google Scholar] [CrossRef]
- Yang, X.M.; Yang, Q.; Teo, K.L. Generalized invexity and generalized invariant monotonicity. J. Optim. Theory Appl. 2003, 117, 607–625. [Google Scholar] [CrossRef]
- Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. Real Acad. Cienc. Exactas Físicas Naturales. Ser. A Mat. 2021, 115, 1–13. [Google Scholar]
- Chu, H.-H.; Zhao, T.-H.; Chu, Y.-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
- Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas Físicas Y Naturales. Ser. A Mat. 2020, 114, 1–14.
- Zhao, T.-H.; Zhou, B.-C.; Wang, M.-K.; Chu, Y.-M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.-H.; Wang, M.-K.; Zhang, W.; Chu, Y.-M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, Y.-M.; Zhao, T.-H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
- Qian, W.-M.; Chu, H.-H.; Wang, M.-K.; Chu, Y.-M. Sharp inequalities for the Toader mean of order −1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Chu, H.-H.; Chu, Y.-M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n = −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Wang, M.-K.; Dai, Y.-Q.; Chu, Y.-M. On the generalized power-type Toader mean. J. Math. Inequal. 2022, 16, 247–264. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Alrweili, H.; Saeed, T.; Soliman, M.S. Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Math 2022, 7, 15659–15679. [Google Scholar] [CrossRef]
- Khan, M.B.; Alsalami, O.M.; Treanțǎ, S.; Saeed, T.; Nonlaopon, K. New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Math. 2022, 7, 15497–15519. [Google Scholar] [CrossRef]
- Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
- Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–626. [Google Scholar] [CrossRef]
- Goetschel, R., Jr.; Voxman, W. Topological properties of fuzzy numbers. Fuzzy Sets Syst. 1983, 10, 87–99. [Google Scholar] [CrossRef]
- Furukawa, N. Convexity and local Lipschitz continuity of fuzzy-valued mappings. Fuzzy Sets Syst. 1998, 93, 113–119. [Google Scholar] [CrossRef]
- Nanda, S.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
- Syau, Y.R. On convex and concave fuzzy mappings. Fuzzy Sets Syst. 1999, 103, 163–168. [Google Scholar] [CrossRef]
- Yan, H.; Xu, J. A class of convex fuzzy mappings. Fuzzy Sets Syst. 2002, 129, 47–56. [Google Scholar] [CrossRef]
- Goetschel, R., Jr.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [Google Scholar] [CrossRef]
- Iqbal, S.A.; Hafez, M.G.; Chu, Y.-M.; Park, C. Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J. Appl. Anal. Comput. 2022, 12, 770–789. [Google Scholar] [CrossRef]
- Huang, T.-R.; Chen, L.; Chu, Y.-M. Asymptotically sharp bounds for the complete p-elliptic integral of the first kind. Hokkaido Math. J. 2022, 51, 189–210. [Google Scholar] [CrossRef]
- Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
- Santos-García, G.; Khan, M.B.; Alrweili, H.; Alahmadi, A.A.; Ghoneim, S.S. Hermite–Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator. Mathematics 2022, 10, 2756. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Zaini, H.G.; Santos-García, G.; Soliman, M.S. The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2022, 15, 66. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
- Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex. Intell. Syst. 2022, 8, 413–427. [Google Scholar] [CrossRef]
- Sana, G.; Khan, M.B.; Noor, M.A.; Mohammed, P.O.; Chu, Y.M. Harmonically convex fuzzy-interval-valued functions and fuzzy-interval Riemann–Liouville fractional integral inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1809–1822. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized p-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
- Noor, M.A. Fuzzy preinvex functions. Fuzzy Sets Syst. 1994, 64, 95–104. [Google Scholar] [CrossRef]
- Syau, Y.R. Preinvex fuzzy mappings. Comput. Math. Appl. 1999, 37, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Syau, Y.R.; Lee, E.S. Fuzzy Weirstrass theorem and convex fuzzy mappings. Comput. Math. Appl. 2006, 51, 1741–1750. [Google Scholar] [CrossRef] [Green Version]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Ding, X.P.; Park, J.Y. A new class of generalized nonlinear implicit quasivariational inclusions with fuzzy mappings. J. Comput. Appl. Math. 2002, 138, 243–257. [Google Scholar] [CrossRef]
- Stefanini, L.; Bede, B. Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. Theory Methods Appl. 2009, 71, 1311–1328. [Google Scholar] [CrossRef] [Green Version]
- Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1980, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.B.; Noor, M.A.; Noor, K.I.; Nisar, K.S.; Ismail, K.A.; Elfasakhany, A. Some Inequalities for LR-(h1, h2)-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Int. J. Comput. Intell. Syst. 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Khan, M.B.; Noor, M.A.; Al-Bayatti, H.M.; Noor, K.I. Some New Inequalities for LR-Log-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Appl. Math. 2021, 15, 459–470. [Google Scholar]
- Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
- Macías-Díaz, J.E.; Khan, M.B.; Noor, M.A.; Abd Allah, A.M.; Alghamdi, S.M. Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Math. 2022, 7, 4266–4292. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
- Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some Hadamard–Fejér Type Inequalities for LR-Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Motreanu, D.; Zeng, S.-D. Generalized penalty and regularization method for differential variational- hemivariational inequalities, SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar]
- Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F.; Yao, J.-C.; Zeng, S.-D. Existence of solutions for a class of noncoercive variational–hemivariational inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
- Zeng, S.-D.; Migorski, S.; Liu, Z.-H. Well-posedness, optimal control, and sensitivity analysis for a class of differential variational- hemivariational inequalities, SIAM J. Optim. 2021, 31, 2829–2862. [Google Scholar]
- Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. Math. Methods Appl. Sci. 2020, 43, 9543–9556. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-H.; Loi, N.V.; Obukhovskii, V. Existence and global bifurcation of periodic solutions to a class of differential variational inequalities. Internat. J. Bifur. Chaos Appl. Sci. Eng. 2013, 23, 1350125. [Google Scholar] [CrossRef]
- Khalil, S.; Kousar, S.; Kausar, N.; Imran, M.; Oros, G.I. Bipolar Interval-Valued Neutrosophic Optimization Model of Integrated Healthcare System. CMC-Computers. Mater. Contin. 2022, 73, 6207–6224. [Google Scholar]
- Valdés, J.N.; Rabossi, F.; Samaniego, A.D. Convex functions: Ariadne’s thread or Charlotte’s spiderweb. Adv. Math. Model. Appl. 2020, 5, 176–191. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics 2022, 10, 3753. https://doi.org/10.3390/math10203753
Khan MB, Santos-García G, Noor MA, Soliman MS. New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics. 2022; 10(20):3753. https://doi.org/10.3390/math10203753
Chicago/Turabian StyleKhan, Muhammad Bilal, Gustavo Santos-García, Muhammad Aslam Noor, and Mohamed S. Soliman. 2022. "New Class of Preinvex Fuzzy Mappings and Related Inequalities" Mathematics 10, no. 20: 3753. https://doi.org/10.3390/math10203753
APA StyleKhan, M. B., Santos-García, G., Noor, M. A., & Soliman, M. S. (2022). New Class of Preinvex Fuzzy Mappings and Related Inequalities. Mathematics, 10(20), 3753. https://doi.org/10.3390/math10203753