Next Article in Journal
Multitask Image Splicing Tampering Detection Based on Attention Mechanism
Previous Article in Journal
Nonlocal Probability Theory: General Fractional Calculus Approach
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions

by
Muhammad Bilal Khan
1,*,
Jorge E. Macías-Díaz
2,3,*,
Savin Treanțǎ
4 and
Mohamed S. Soliman
5
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes, Avenida Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico
3
Department of Mathematics, School of Digital Technologies, Tallinn University, Narva Rd. 25, 10120 Tallinn, Estonia
4
Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
5
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Authors to whom correspondence should be addressed.
Mathematics 2022, 10(20), 3851; https://doi.org/10.3390/math10203851
Submission received: 29 August 2022 / Revised: 12 October 2022 / Accepted: 15 October 2022 / Published: 17 October 2022

Abstract

:
The goal of this study is to create new variations of the well-known Hermite–Hadamard inequality (HH-inequality) for preinvex interval-valued functions (preinvex I-V-Fs). We develop several additional inequalities for the class of functions whose product is preinvex I-V-Fs. The findings described here would be generalizations of those found in previous studies. Finally, we obtain the Hermite–Hadamard–Fejér inequality with the support of preinvex interval-valued functions. Some new and classical special cases are also obtained. Moreover, some nontrivial examples are given to check the validity of our main results.

1. Introduction

Let be the set of real numbers and J : K be a convex function. If o , q K with o q , then
J o + q 2 J o + J q 2 .
where K is a convex set, which is named Jensen’s inequality [1]. The famous HH-inequality is then created by Hermite and Hadamard by adding the integral mean value of the convex function J to inequality (1).
Let J : K be a convex function. If o , q K with o q , then
J o + q 2 1 q o o q J ω d ω J o + J q 2 ,
If 𝔍 is concave, the inequality (2) holds in the inverse fashion, see [2,3]. This inequality has several applications in numerical integration since it may be used to give a rough approximation of the integral mean on [ o , q ]. For details on the use and rising popularity of the HH-inequality, readers might refer to [4,5,6,7,8,9,10,11,12,13,14].
The results point to the prevalence of fractional-order phenomena and show that fractional calculus is more accurate and reliable than classical calculus. The fractional calculus technique, as a result, has become one of the most well-liked study topics in academia. Numerous fractional-order research findings on the HH-inequality have recently been published. Examples include the Riemann–Liouville fractional integral inequalities [15,16,17,18,19,20,21,22,23,24], conformable fractional integral inequalities [25], k-Riemann–Liouville fractional integral inequalities [26], and local fractional integral inequalities [27,28,29,30,31,32,33,34,35,36,37,38,39].
Research on fractional operator-type integral inequalities is becoming more and more popular, since fractional integral operators have several applications in a number of fields. Set et al. [40] used Raina’s fractional integral operators to create new Hermite–Hadamard–Mercer inequalities. With a modified Mittag-Leffler kernel, Srivastava et al. [41] created the generalized left-side and right-side fractional integral operators, and they then used this large family of fractional integral operators to study the fascinating Chebyshev inequality. Sun established certain Hermite–Hadamard-type inequalities for extended h-convex functions and modified preinvex functions in refs. [28,42] using two local fractional integral operators with a Mittag-Leffler kernel. The two local fractional integral operators were then used by Xu et al. [43] to examine Hermite–Hadamard–Mercer for extended h-convex functions. For more information, see [44,45,46,47,48,49,50,51,52,53] and the references therein.
Ahmad et al. established various inequalities pertaining to the right side of the HH-inequality in [54], as well as two new fractional integral operators with exponential kernels. The constraint on the left side of the HH-inequality was then studied by Wu et al. [55] using these integral operators. In order to create various inequalities of the HH- and Ostrowski types, Budak et al. [56] combined exponential kernels with these integral operators. The use of the novel integral operators with exponential kernels in interval-valued and interval-valued coordinated HH-inequalities was expanded by Du and Zhou et al. (see [57,58,59,60,61,62]).
Furthermore, Khan et al. introduced the different classes of convex functions such as 𝘩 1 , 𝘩 2 -convex fuzzy I-V-Fs [63], 𝘩 1 , 𝘩 2 -preinvex fuzzy I-V-Fs [64], log-s-convex fuzzy I-V-Fs in the second sense [65], harmonically convex fuzzy I-V-Fs [66], generalized p-convex fuzzy I-V-Fs [67] and introduced HH-type inequalities of these functions. For more information, see [68,69,70,71,72,73,74,75,76,77,78].
The goal of this study is to find certain HH-inclusions that are more generic. The study’s general format consists of five sections, including an introduction. The remainder of the paper is organized as follows: Section 2 introduces certain types of integrals of real-valued functions and their accompanying HH-inequalities. In Section 2, we briefly summarize the idea of interval-valued functions. We discuss generalized integrals of interval-valued functions in Section 2, and provide some examples of these integrals. In Section 3, we use defined generalized integrals to show many HH-inclusions for interval-valued convex functions and to validate the main results; we have provided some nontrivial examples. Finally, in Section 4, some findings and future study areas are explored.

2. Preliminaries

We offer some fundamental arithmetic regarding interval analysis in this paragraph, which will be quite useful throughout the article.
a = a ,   a   , b = b ,   b       a ϰ   a   a n d   b 𝓏   b     ϰ ,   𝓏
a + b = a ,   a + b ,   b = a + b ,   a + b ,
a b = a ,   a b ,   b = a b ,   a b ,
a × b = a ,   a × b ,   b = min X ,   max X
min X = min a b ,   a b ,   a b ,   a b , max X = max a b ,   a b ,   a b ,   a b
ν . a ,   a = ν a ,   ν a     if   ν > 0 ,           0                           if   ν = 0 , ν a , ν a     if   ν < 0 .  
Let K C , K C + , K C be the set of all closed intervals of , the set of all closed positive intervals of and the set of all closed negative intervals of . Then, K C , K C + , and K C are defined as
K C = a ,   a : a ,   a   and   a   a ,
K C + = a ,   a : a ,   a K C   and   a > 0 ,
K C = a ,   a : a ,   a K C   and   a < 0 .
For a , a , b , b K C , the inclusion is defined by a , a b , b , if and only if b a , a b .
Theorem 1
([68]). If J : o ,   q K C is an I-V-F such that J ω = J ω ,   J ω , then J is interval Riemann integrable ( I R -integrable) over o , q if and only if J ω and J ω are both Rieman- integrable ( R -integrable) over o , q such that
I R o q J ω d ω = R o q J ω d ω ,   R o q J ω d ω ,
where J , J : o ,   q .
The collection of all Riemann-integrable real-valued functions and Riemann-integrable I-V-Fs is denoted by R o , q and T R o , q , respectively.
Definition 1
([72]). Let K be a convex set. Then I-V-F J : K K C + is named as convex on K if
J ξ ω + 1 ξ ϰ ξ J ω + 1 ξ J ϰ ,  
for all ω ,   ϰ K ,   ξ 0 , 1 .   J is named as concave on K if inequality (12) is reversed.
Definition 2
([78]). Let K be an invex set. Then, I-V-F J : K K C + is named as preinvex on K with respect to w if
J ω + 1 ξ w ϰ , ω ξ J ω + 1 ξ J ϰ ,  
for all ω ,   ϰ K ,   ξ 0 , 1 , where w : K × K .   J is named as preincave on K with respect to w if inequality (13) is reversed. J is named as affine if J is both convex and concave.
Remark 1.
The preinvex I-V-Fs have some very nice properties similar to convex I-V-F:
  • if J is preinvex I-V-F, then β J is also preinvex for β 0 .
  • if J and T both are preinvex I-V-Fs, then max J ω , T ω is also preinvex I-V-F.
In the case of w ϰ , ω = ϰ ω , we obtain the Definition 2 of convex I-V-F.
Theorem 2.
Let K be an invex set and J : K K C + be a I-V-F such that
J ω = J ω ,   J ω ,     ω K .  
for all ω K . Then, J is preinvex I-V-F on K , if and only if, J ω and J ω are preinvex and preincave functions, respectively.
Proof. 
The proof of this result is similar to Theorem 6, see [63]. □
Example 1.
We consider the I-V-F J : 0 , 1 K C + defined by
J ω = 2 ω 2 , 4 ω   .  
Hence, end point functions J ω ,   J ω are preinvex functions with respect to w ϰ , ω = ϰ ω . Hence, J ω is preinvex I-V-F.

3. Main Results

In this section, we propose interval HH-inequalities for preinvex I-V-Fs. Moreover, some examples are presented that verify the applicability of theory developed in this study.
Theorem 3.
(The interval HH-inequality for preinvex I-V-F). Let J : o , o + w q , o K C + be a preinvex I-V-F such that J ω = J ω , J ω for all ω o , o + w q , o . If J T R o , o + w q , o , then
J 2 o + w q , o 2 1 w q , o   I R o o + w q , o J ω d ω J o + J q 2 .
Proof. 
Let J : o , o + w q , o K C + be a preinvex I-V-F. Then, by hypothesis, we have
2 J 2 o + w q , o 2 J o + 1 ξ w q , o + J o + ξ w q , o .
Therefore, we have
2 J 2 o + w q , o 2 J o + 1 ξ w q , o + J o + ξ w q , o 2 J 2 o + w q , o 2 J o + 1 ξ w q , o + J o + ξ w q , o .
Then,
2 0 1 J 2 o + w q , o 2 d ξ 0 1 J o + 1 ξ w q , o d ξ + 0 1 J o + ξ w q , o d ξ , 2 0 1 J 2 o + w q , o 2 d ξ 0 1 J o + 1 ξ w q , o d ξ + 0 1 J o + ξ w q , o d ξ .
It follows that
J 2 o + w q , o 2 1 w q , o   o o + w q , o J ω d ω , J 2 o + w q , o 2 2 w q , o   o o + w q , o J ω d ω .
That is,
J 2 o + w q , o 2 ,   J 2 o + w q , o 2 1 w q , o o o + w q , o J ω d ω ,   o o + w q , o J ω d ω .
Thus,
J 2 o + w q , o 2 1 w q , o   I R o o + w q , o J ω d ω .
In a similar way as above, we have
1 w q , o   I R o o + w q , o J ω d ω J o + J q 2 .
Combining (17) and (18), we have
J 2 o + w q , o 2 1 w q , o   I R o o + w q , o J ω d ω J o + J q 2 .
This completes the proof. □
Remark 2.
If w q , o = q o , then Theorem 3 reduces to the result for convex I-V-F, see [78]:
J o + q 2 1 q o   I R o q J ω d ω J o + J q 2 .  
If J ω = J ω , then Theorem 3 reduces to the result for preinvex function, see [69]:
J 2 o + w q , o 2 1 w q , o   R o o + w q , o J ω d ω J o + J q 0 1 ξ d ξ .
If J ω = J ω with w q , o = q o , then Theorem 3 reduces to inequality (2).
Example 2.
We consider the I-V-F J : o , o + w q , o = 0 , w 2 , 0 K C + defined by J ω = 2 ω 2 , 4 ω . Hence, end point functions J ω = 2 ω 2 ,   J ω = 4 ω are preinvex functions with respect to w q , o = q o . Hence, J ω is preinvex I-V-F with respect to w q , o = q o . We now compute the following:
J 2 o + w q , o 2 1 w q , o   I R o o + w q , o J ω d ω J o + J q 2 .  
J 2 o + w q , o 2 = J 1 = 2 ,
1 w q , o   o o + w q , o J ω d ω = 1 2   0 2 2 ω 2 d ω = 8 3 ,
J o + J q 2 = 4 ,
that means
2 8 3 4 .
Similarly, it can be easily shown that
J 2 o + w q , o 2 1 w q , o   o o + w q , o J ω d ω J o + J q 2 .
such that
J 2 o + w q , o 2 = J 1 = 4 , 1 w q , o   o o + w q , o J ω d ω = 1 2   0 2 4 ω d ω = 4 , J o + J q 2 = 4 .
From which, it follows that
4 = 4 = 4 ,
that is,
2 , 4 8 3 ,   4 4 ,   4 .
Hence,
  J 2 o + w q , o 2 1 w q , o   I R o o + w q , o J ω d ω J o + J q 2 .
Theorem 4.
Let J , A   : o , o + w q , o K C + be two preinvex I-V-Fs such that J ω = J ω ,   J ω and A ω = A ω ,   A ω for all ω o , o + w q , o . If J , A and J × A T R o , o + w q , o , then
1 w q , o   I R o o + w q , o J ω × A ω d ω ϖ o , q 3 + η o , q 6 ,
where ϖ o , q = J o × A o + J q × A q ,   η o , q = J o × A q + J q × A o , and ϖ o , q = ϖ o , q ,   ϖ o , q and η o , q = η o , q ,   η o , q .
Proof. 
Since J ,   A T R q , q + w o , q , then we have
  J q + 1 ξ w o , q ξ J q + 1 ξ J o ,   J q + 1 ξ w o , q ξ J q + 1 ξ J o .  
Moreover,
  A q + 1 ξ w o , q ξ A q + 1 ξ A o ,   A q + 1 ξ w o , q ξ A q + 1 ξ A o .  
From the definition of left and right preinvex IV-F, it follows that 0 J ω and 0 A ω , so
J q + 1 ξ w o , q × A q + 1 ξ w o , q ξ J q + 1 ξ J o ξ A q + 1 ξ A o = J q × A q ξ 2 + J o × A o ξ 2 + J q × A o ξ 1 ξ + J o × A q ξ 1 ξ , J q + 1 ξ w o , q × A q + 1 ξ w o , q   ξ J q + 1 ξ J o ξ A q + 1 ξ A o   = J q × A q ξ 2 + J o × A o ξ 2 + J q × A o ξ 1 ξ + J o × A q ξ 1 ξ ,
Integrating both sides of the above inequality over [0,1], we obtain
0 1 J q + 1 ξ w o , q A q + 1 ξ w o , q = 1 w o , q q q + w o , q J ω A ω d ω   J q A q + J o A o 0 1 ξ 2 d ξ + J q A o + J o A q 0 1 ξ 1 ξ d ξ ,   0 1 J q + 1 ξ w o , q A q + 1 ξ w o , q = 1 w o , q   q q + w o , q J ω A ω d ω J q A q + J o A o 0 1 ξ 2 d ξ + J q A o + J o A q 0 1 ξ 1 ξ d ξ .
It follows that
1 w o , q q q + w o , q J ω A ω d ω ϖ q , o 0 1 ξ 2 d ξ + η q , o 0 1 ξ 1 ξ d ξ ,   1 w o , q   q q + w o , q J ω A ω d ω   ϖ q , o 0 1 ξ 2 d ξ + η q , o 0 1 ξ 1 ξ d ξ ,
that is,
1 w o , q q q + w o , q J ω A ω d ω ,   q q + w o , q J ω A ω d ω ϖ q , o 3 ,   ϖ q , o 3 + η q , o 6 ,   η q , o 6 .
Thus,
1 w o , q   I R q q + w o , q J ω A ω d ω ϖ q , o 3 + η q , o 6 ,
and the theorem has been established. □
Example 3.
We consider the I-V-Fs J , A : o , o + w q , o = 0 , w 1 , 0 K C + defined by J ω = 2 ω 2 , 4 ω and A ω = ω , 2 ω . Since end point functions J ω = 2 ω 2 ,   J ω = 4 ω and A ω = ω , A ω = 2 ω preinvex functions with respect to w q , o = q o . Hence, J ,   A both are preinvex I-V-Fs. We now compute the following:
1 w q , o   o o + w q , o J ω × A ω d ω = 1 2 ,   1 w q , o   o o + w q , o J ω × A ω d ω = 8 3 ,
ϖ o , q 3 = 2 3 ,     ϖ o , q 3 = 8 3 ,
η o , q 6 = 0 , η o , q 6 = 0 ,
that means
1 2 , 8 3 2 3 , 8 3 .
Hence, Theorem 4 is verified.
The following assumption is required to prove the next result regarding the bi-function w : K × K which is known as:
Condition C
[70]. Let K be an invex set with respect to w . For any o , q K and ξ 0 , 1 ,
w q , o + ξ w q , o = 1 ξ w q , o ,  
w o , o + ξ w q , o = ξ w q , o .
Clearly for ξ = 0, we have w q , o = 0 if and only if,   q = o , for all o , q K . For the applications of Condition C, see [5,8,42,69,70].
Theorem 5.
Let J , A   : o , o + w q , o K C + , be two preinvex I-V-Fs such that J ω = J ω , J ω and A ω = A ω , A ω for all ω o , o + w q , o . If J , A and J × A T R o , o + w q , o and condition C hold for w , then
2   J 2 o + w q , o 2 × A 2 o + w q , o 2 1 w q , o   I R o o + w q , o J ω × A ω d ω + ϖ o , q 6 + η o , q 3 ,
where ϖ o , q = J o × A o + J q × A q ,   η o , q = J o × A q + J q × A o , and ϖ o , q = ϖ o , q , ϖ o , q and η o , q = η o , q , η o , q .
Proof. 
Using condition C, we can write
o + 1 2 w q , o = o + ξ w q , o + 1 2 w o + 1 ξ w q , o , o + ξ w q , o .
By hypothesis, we have
J 2 o + w q , o 2 × A 2 o + w q , o 2 J 2 o + w q , o 2 × A 2 o + w q , o 2 = J o + ξ w q , o + 1 2 w o + 1 ξ w q , o ,   o + ξ w q , o × A o + ξ w q , o + 1 2 w o + 1 ξ w q , o ,   o + ξ w q , o = J o + ξ w q , o + 1 2 w o + 1 ξ w q , o ,   o + ξ w q , o × A o + ξ w q , o + 1 2 w o + 1 ξ w q , o ,   o + ξ w q , o 1 4 J o + 1 ξ w q , o × A o + 1 ξ w q , o + J o + 1 ξ w q , o × A o + ξ w q , o     + 1 4 J o + ξ w q , o × A o + 1 ξ w q , o + J o + ξ w q , o × A o + ξ w q , o , 1 4 J o + 1 ξ w q , o × A o + 1 ξ w q , o + J o + 1 ξ w q , o × A o + ξ w q , o       + 1 4 J o + ξ w q , o × A o + 1 ξ w q , o + J o + ξ w q , o × A o + ξ w q , o ,     1 4 J o + 1 ξ w q , o × A o + 1 ξ w q , o + J o + ξ w q , o × A o + ξ w q , o   + 1 4 ξ J o + 1 ξ J q × 1 ξ A o + ξ A q + 1 ξ J o + ξ J q × ξ A o + 1 ξ A q ,   1 4 J o + 1 ξ w q , o × A o + 1 ξ w q , o + J o + ξ w q , o × A o + ξ w q , o                                 + 1 4 ξ J o + 1 ξ J q × 1 ξ A o + ξ A q + 1 ξ J o + ξ J q × ξ A o + 1 ξ A q ,       = 1 4 J o + 1 ξ w q , o × A o + 1 ξ w q , o + J o + ξ w q , o × A o + ξ w q , o   + 1 2 ξ 2 + 1 ξ 2 η o , q + ξ 1 ξ + 1 ξ ξ ϖ o , q , = 1 4 J o + 1 ξ w q , o × A o + 1 ξ w q , o + J o + ξ w q , o × A o + ξ w q , o + 1 2 ξ 2 + 1 ξ 2 η o , q + ξ 1 ξ + 1 ξ ξ ϖ o , q .
Integrating over 0 , 1 , we have
2   J 2 o + w q , o 2 × A 2 o + w q , o 2 1 w q , o   o o + w q , o J ω × A ω d ω + ϖ o , q 6 + η o , q 3 , 2   J 2 o + w q , o 2 × A 2 o + w q , o 2 1 w q , o   o o + w q , o J ω × A ω d ω + ϖ o , q 6 + η o , q 3 ,
from which, we have
2 J 2 o + w q , o 2 × A 2 o + w q , o 2 ,   J 2 o + w q , o 2 × A 2 o + w q , o 2 1 w q , o o o + w q , o J ω × A ω d ω   ,   o o + w q , o J ω × A ω d ω     + ϖ o , q 6 ,   ϖ o , q 6 + η o , q 3 ,   η o , q 3 ,
that is,
2   J 2 o + w q , o 2 × A 2 o + w q , o 2 1 w q , o   I R o o + w q , o J ω × A ω d ω + ϖ o , q 6 + η o , q 32 τ d τ lued functions ions with
this completes the proof. □
Example 4.
We consider the I-V-Fs J , A : o , o + w q , o = 0 , w 1 , 0 K C + defined by, J ω = 2 ω 2 , 4 ω and A ω = ω , 2 ω , then J ω ,   A ω both are preinvex I-V-Fs with respect to w q , o = q o . We have J ω = 2 ω 2 ,   J ω = 4 ω and A ω = ω , A ω = 2 ω . We now compute the following:
2   J 2 o + w q , o 2 × A 2 o + w q , o 2 = 1 2 , 2   J 2 o + w q , o 2 × A 2 o + w q , o 2 = 4 , 1 w q , o   o o + w q , o J ω × A ω d ω = 1 2   ,     1 w q , o   o o + w q , o J ω × A ω d ω = 8 3 , ϖ o , q 6 = 1 3 ,   ϖ o , q 6 = 4 3 , η o , q 3 = 0 ,     η o , q 3 = 0 ,
that means
1 2 , 4 5 6 , 4 .
Hence, Theorem 5 is verified.
We now give HH-Fejér inequalities for preinvex I-V-Fs. Firstly, we obtain the second HH-Fejér inequality for preinvex I-V-F.
Theorem 6.
Let J : o , o + w q , o K C + be a preinvex I-V-F with o < o + w q , o such that J ω = J ω , J ω for all ω o , o + w q , o . If J T R o , o + w q , o and C : o , o + w q , o ,   C ω 0 , symmetric with respect to o + 1 2 w q , o , then
1 w q , o   I R o o + w q , o J ω C ω d ω J o + J q 0 1 ξ C o + ξ w q , o d ξ .
Proof. 
Let J be a preinvex I-V-F. Then, we have
J o + 1 ξ w q , o C o + 1 ξ w q , o                                                                 ξ J o + 1 ξ J q C o + 1 ξ w q , o , J o + 1 ξ w q , o C o + 1 ξ w q , o                                                                 ξ J o + 1 ξ J q C o + 1 ξ w q , o .
Moreover,
                                J o + ξ w q , o C o + ξ w q , o 1 ξ J o + ξ J q C o + ξ w q , o , J o + ξ w q , o C o + ξ w q , o 1 ξ J o + ξ J q C o + ξ w q , o .
After adding (23) and (24), and integrating over 0 , 1 , we get
0 1 J o + 1 ξ w q , o C o + 1 ξ w q , o d ξ + 0 1 J o + ξ w q , o C o + ξ w q , o d ξ 0 1 J o ξ C o + 1 ξ w q , o + 1 ξ C o + ξ w q ,   o + J q 1 ξ C o + 1 ξ w q , o + ξ C o + ξ w q ,   o d ξ , 0 1 J o + ξ w q , o C o + ξ w q , o d ξ + 0 1 J o + 1 ξ w q , o C o + 1 ξ w q , o d ξ 0 1 J o ξ 𝒞 o + 1 ξ w q , o + 1 ξ 𝒞 o + ξ w q , o + J q 1 ξ 𝒞 o + 1 ξ w q , o + ξ 𝒞 o + ξ w q , o d ξ . = 2 J o 0 1 ξ C o + 1 ξ w q , o d ξ + 2 J q 0 1 ξ C o + ξ w q ,   o d ξ , = 2 J o 0 1 ξ C o + 1 ξ w q , o d ξ + 2 J q 0 1 ξ C o + ξ w q ,   o d ξ .
Since C is symmetric, then
0 1 J o + 1 ξ w q , o C o + 1 ξ w q , o d ξ + 0 1 J o + ξ w q , o C o + ξ w q , o d ξ 2 J o + J q 0 1 ξ C o + ξ w q , o d ξ , 0 1 J o + ξ w q , o C o + ξ w q , o d ξ + 0 1 J o + 1 ξ w q , o C o + 1 ξ w q , o d ξ 2 J o + J q 0 1 ξ C o + ξ w q , o d ξ .
We have
0 1 J o + 1 ξ w q , o C o + 1 ξ w q , o d ξ = 0 1 J o + ξ w q , o C o + ξ w q , o d ξ = 1 w q , o   o o + w q , o J ω C ω d ω ,   0 1 J o + ξ w q , o C o + ξ w q , o d ξ   = 0 1 J o + 1 ξ w q , o C o + 1 ξ w q , o d ξ = 1 w q , o   o o + w q , o J ω C ω d ω .        
From (26), we have
1 w q , o   o o + w q , o J ω C ω d ω J o + J q 0 1 ξ 𝒞 o + ξ w q , o d ξ ,     1 w q , o   o o + w q , o J ω C ω d ω   J o + J q 0 1 ξ 𝒞 o + ξ w q , o d ξ ,
that is,
1 w q , o   o o + w q , o J ω C ω d ω ,   1 w q , o   o o + w q , o J ω C ω d ω J o + J q ,   J o + J q 0 1 ξ C o + ξ w q , o d ξ ,
Hence,
1 w q , o   I R o o + w q , o J ω C ω d ω J o + J q 0 1 ξ C o + ξ w q , o d ξ .
Next, we construct first HH-Fejér inequality for preinvex I-V-F, which generalizes first HH-Fejér inequalities for preinvex function, see [69,70]. □
Theorem 7.
Let J : o , o + w q , o K C + be a preinvex I-V-F with o < o + w q , o such that J ω = J ω , J ω for all ω o , o + w q , o . If J T R o , o + w q , o and C : o , o + w q , o ,   C ω 0 , symmetric with respect to o + 1 2 w q , o , and o o + w q , o C ω d ω > 0 , and Condition C for w , then
J o + 1 2 w q , o 1 o o + w q , o C ω d ω   I R o o + w q , o J ω C ω d ω .  
Proof. 
Using condition C, we can write
o + 1 2 w q , o = o + ξ w q , o + 1 2 w o + 1 ξ w q , o ,   o + ξ w q , o .
Since J is a preinvex, we have
J o + 1 2 w q , o = J o + ξ w q , o + 1 2 w o + 1 ξ w q , o ,   o + ξ w q , o 1 2 J o + 1 ξ w q , o + J o + ξ w q , o , J o + 1 2 w q , o = J o + ξ w q , o + 1 2 w o + 1 ξ w q , o ,   o + ξ w q , o   J o + 1 ξ w q , o + J o + ξ w q , o .
By multiplying (28) by C o + 1 ξ w q , o = C o + ξ w q , o and integrating it by ξ over 0 , 1 , we obtain
J o + 1 2 w q , o 0 1 C o + ξ w q , o d ξ   1 2 0 1 J o + 1 ξ w q , o C o + 1 ξ w q , o d ξ + 0 1 J o + ξ w q , o d ξ C o + ξ w q , o J o + 1 2 w q , o 0 1 C o + ξ w q , o d ξ 1 2 0 1 J o + 1 ξ w q , o C o + 1 ξ w q , o d ξ + 0 1 J o + ξ w q , o C o + ξ w q , o d ξ .
Since
0 1 J o + 1 ξ w q , o C o + 1 ξ w q , o d ξ = 0 1 J o + ξ w q , o C o + ξ w q , o d ξ = 1 w q , o   o o + w q , o J ω C ω d ω 0 1 J o + 1 ξ w q , o C o + 1 ξ w q , o d ξ = 0 1 J o + ξ w q , o C o + ξ w q , o d ξ = 1 w q , o   o o + w q , o J ω C ω d ω .
From (30), we have
J o + 1 2 w q , o   1 o o + w q ,   o C ω d ω   o o + w q , o J ω C ω d ω ,     J o + 1 2 w q , o   1 o o + w q ,   o C ω d ω   o o + w q , o J ω C ω d ω .
From which, we have
J o + 1 2 w q , o ,             J o + 1 2 w q , o                                                               1 o o + w q , o C ω d ω   o o + w q , o J ω C ω d ω ,       o o + w q , o J ω C ω d ω ,    
that is,
J o + 1 2 w q , o 1 o o + w q ,   o C ω d ω   I R o o + w q , o J ω C ω d ω .
This completes the proof. □
Remark 3.
(i)
If w q ,   o = q o , then inequalities in Theorems 6 and 7 reduce for convex I-V-Fs, see [78].
(ii)
If J o = J o , then Theorems 6 and 7 reduce to classical first and second HH-Fejér inequality for preinvex function, see [69].
(iii)
If J o = J o and w q , o = q o then Theorems 6 and 7 reduce to classical first and second HH-Fejér inequality for convex function, see [71].
Example 5.
We consider the I-V-F J : 1 , 1 + w 4 , 1 K C + defined by J ω = 1 ω , ω . Since end point functions J ω ,   J ω are preinvex functions w ϰ , ω = ϰ ω , then J ω is preinvex I-V-F. If
C ω = ω 1 ,             σ 1 , 5 2 , 4 ω ,       σ ( 5 2 ,   4 .  
Then, we have
  1 w 4 , 1 1 1 + w 4 , 1 J ω C ω d ω 1 w 4 , 1 1 1 + w 4 , 1 J ω C ω d ω = 1 3 1 4 J ω C ω d ω = 1 3 1 5 2 J ω C ω d ω + 1 3 5 2 4 J ω C ω d ω ,       = 1 3 1 4 J ω C ω d ω = 1 3 1 5 2 J ω C ω d ω + 1 3 5 2 4 J ω C ω d ω , = 1 3 1 5 2 1 ω ω 1 d ω + 1 3 5 2 4 1 ω 4 ω d ω = 1 3 4 l o g 8 5 + l o g 5 2 ,     = 1 3 1 5 2 ω ω 1 d ω + 1 3 5 2 4 ω 4 ω d ω = 15 8 .                                                                              
Moreover,
J o + J q 0 1 ξ C o + ξ w q , o d ξ     J o + J q 0 1 ξ C o + ξ w q , o d ξ = 5 4   0 1 2 3 ξ 2 d ω + 1 2 1 ξ 3 3 ξ d ξ = 15 32 .   = 5 0 1 2 3 ξ 2 d ω + 1 2 1 ξ 3 3 ξ d ξ = 15 8 .
From (31) and (32), we have
1 3 4 l o g 8 5 + l o g 5 2 ,   15 8 15 32 ,   15 8 .
Hence, Theorem 6 is verified.
For Theorem 7, we have
J o + 1 2 w q , o = 2 5 ,     J o + 1 2 w q , o = 5 2   ,                            
o o + w q ,   o C ω d ω = 1 5 2 ω 1 d ω + 5 2 4 4 ω d ω = 9 4 ,
    1 o o + w q ,   o C ω d ω   1 4 J ω C ω d ω = 4 9 4 l o g 8 5 + l o g 5 2   1 o o + w q ,   o C ω d ω   1 4 J ω C ω d ω = 5 2 .                            
From (33) and (34), we have
2 5 ,   5 2 4 9 4 l o g 8 5 + l o g 5 2 ,   5 2 .
Hence, Theorem 7 is verified.

4. Conclusions

We constructed the new Hermite–integral Hadamard’s inequality for preinvex interval-valued functions in this study employing the interval integral operators with exponential kernel supplied by Moore in ref. [68]. In order to show the size relationship of the function values of the inequalities and to confirm the veracity of the findings, we offered four numerical examples. Our study of interval integral operator-type integral inequalities will broaden the practical application of Hermite–Hadamard-type inequalities, because integral operators are frequently used in engineering technology, such as mathematical models, and because different integral operators are suitable for different types of practical problems. We will study these inequalities further using various types of integral operators, because we are aware that integral operators are employed in many other fields. This will also provide a direction for our future research.

Author Contributions

Methodology, M.B.K.; validation, M.S.S.; formal analysis, M.S.S.; investigation, M.B.K.; resources, M.S.S.; data curation, J.E.M.-D.; writing—original draft preparation, M.B.K.; writing—review and editing, M.B.K. and M.S.S.; visualization, J.E.M.-D.; supervision, M.B.K. and S.T.; project administration, M.B.K. and S.T.; funding acquisition, M.S.S. and J.E.M.-D. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

This research received funding support from the NSRF via the Program Management Unit for Human Resources and Institutional Development, Research and Innovation (grant number B05F640088).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Jensen, J.L.W.V. Sur les functions convexes et les inegalites entre les valeurs moyennes. Acta Math. 1906, 30, 175–193. [Google Scholar] [CrossRef]
  2. Hadamard, J. Etude sur les proprietes des fonctions entieres et en particulier d’une fonction considree par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
  3. Hermite, C.H. Sur deux limites d’une integrale definie. Mathesis 1883, 3, 82. [Google Scholar]
  4. Kashuri, A.; Iqbal, S.; Liko, R.; Gao, W.; Samraiz, M. Integral inequalities for s-convex functions via generalized conformable fractional integral operators. Adv. Differ. Equ. 2020, 2020, 217. [Google Scholar] [CrossRef]
  5. Noor, M.A.; Noor, K.I.; Rashid, S. Some new class of preinvex functions and inequalities. Mathematics 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
  6. Sun, W.B.; Liu, Q. New Hermite-Hadamard type inequalities for (a,m)-convex functions and applications to special means. J. Math. Inequal. 2017, 11, 383–394. [Google Scholar] [CrossRef]
  7. İşcan, I. Hermite-Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  8. Liao, J.G.; Wu, S.H.; Du, T.S. The Sugeno integral with respect to a-preinvex functions. Fuzzy Sets Syst. 2020, 379, 102–114. [Google Scholar] [CrossRef]
  9. Delavar, M.R.; De La Sen, M. A mapping associated to h-convex version of the Hermite-Hadamard inequality with applications. J. Math. Inequal. 2020, 14, 329–335. [Google Scholar] [CrossRef]
  10. Zhao, T.-H.; Castillo, O.; Jahanshahi, H.; Yusuf, A.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.-M. A fuzzy-based strategy to suppress the novel coronavirus (2019-NCOV) massive outbreak. Appl. Comput. Math. 2021, 20, 160–176. [Google Scholar]
  11. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. On the bounds of the perimeter of an ellipse. Acta Math. Sci. 2022, 42, 491–501. [Google Scholar] [CrossRef]
  12. Zhao, T.-H.; Wang, M.-K.; Hai, G.-J.; Chu, Y.-M. Landen inequalities for Gaussian hypergeometric function. Rev. Real Acad. Cienc. Exactas Físicas Naturales. Ser. A Matemáticas 2022, 116, 53. [Google Scholar] [CrossRef]
  13. Khan, M.B.; Noor, M.A.; Al-Shomrani, M.M.; Abdullah, L. Some Novel Inequalities for LR-h-Convex Interval-Valued Functions by Means of Pseudo Order Relation. Math. Meth. Appl. Sci. 2022, 45, 1310–1340. [Google Scholar] [CrossRef]
  14. Khan, M.B.; Macías-Díaz, J.E.; Treanta, S.; Soliman, M.S.; Zaini, H.G. Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal Fract. 2022, 6, 178. [Google Scholar] [CrossRef]
  15. Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Ba¸sak, N. Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
  16. Ozdemir, M.E.; Dragomir, S.S.; Yıldız, Ç. The Hadamard inequalities for convex function via fractional integrals. Acta Math. Sci. 2013, 33, 1293–1299. [Google Scholar] [CrossRef]
  17. Awan, M.U.; Kashuri, A.; Nisar, K.S.; Javed, M.Z.; Iftikhar, S.; Kumam, P.; Chaipunya, P. New fractional identities, associated novel fractional inequalities with applications to means and error estimations for quadrature formulas. J. Inequal. Appl. 2022, 2022, 3. [Google Scholar] [CrossRef]
  18. Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y.-M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  19. Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. Sharp power mean bounds for the tangent and hyperbolic sine means. J. Math. Inequal. 2021, 15, 1459–1472. [Google Scholar] [CrossRef]
  20. Hajiseyedazizi, S.N.; Samei, M.E.; Alzabut, J.; Chu, Y.-M. On multi-step methods for singular fractional q-integro-differential equations. Open Math. 2021, 19, 1378–1405. [Google Scholar] [CrossRef]
  21. Jin, F.; Qian, Z.-S.; Chu, Y.-M.; Rahman, M. On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative. J. Appl. Anal. Comput. 2022, 12, 790–806. [Google Scholar] [CrossRef]
  22. Wang, F.-Z.; Khan, M.N.; Ahmad, I.; Ahmad, H.; Abu-Zinadah, H.; Chu, Y.-M. Numerical solution of traveling waves in chemical kinetics: Time-fractional fisher’s equations. Fractals 2022, 30, 2240051. [Google Scholar] [CrossRef]
  23. Zhao, T.-H.; Bhayo, B.A.; Chu, Y.-M. Inequalities for generalized Grötzsch ring function. Comput. Methods Funct. Theory 2022, 22, 559–574. [Google Scholar] [CrossRef]
  24. Khan, M.B.; Noor, M.A.; Macías-Díaz, J.E.; Soliman, M.S.; Zaini, H.G. Some integral inequalities for generalized left and right log convex interval-valued functions based upon the pseudo-order relation. Demonstr. Math. 2022, 55, 387–403. [Google Scholar] [CrossRef]
  25. Set, E.; Sarikaya, M.Z.; Gözpinar, A. Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities. Creat. Math. Inform. 2017, 26, 221–229. [Google Scholar] [CrossRef]
  26. Du, T.S.; Awan, M.U.; Kashuri, A.; Zhao, S.S. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity. Appl. Anal. 2021, 100, 642–662. [Google Scholar] [CrossRef]
  27. Du, T.S.; Wang, H.; Khan, M.A.; Zhang, Y. Certain integral inequalities considering generalized m-convexity on fractal sets and their applications. Fractals 2019, 27, 1950117. [Google Scholar] [CrossRef]
  28. Sun, W.B. Some new inequalities for generalized h-convex functions involving local fractional integral operators with Mittag-Leffler kernel. Math. Meth. Appl. Sci. 2021, 44, 4985–4998. [Google Scholar] [CrossRef]
  29. Sun, W.B. Hermite-Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization. Fractals 2021, 29, 2150098. [Google Scholar] [CrossRef]
  30. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  31. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  32. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev. Real Acad. Cienc. Exactas Físicas Naturales. Ser. A Matemáticas 2021, 115, 46. [Google Scholar] [CrossRef]
  33. Chu, H.-H.; Zhao, T.-H.; Chu, Y.-M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contra harmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  34. Zhao, T.-H.; He, Z.-Y.; Chu, Y.-M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
  35. Zhao, T.-H.; Wang, M.-K.; Chu, Y.-M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  36. Zhao, T.-H.; Shi, L.; Chu, Y.-M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas Físicas Y Naturales. Ser. A Matemáticas 2020, 114, 96. [Google Scholar] [CrossRef]
  37. Zhao, T.-H.; Zhou, B.-C.; Wang, M.-K.; Chu, Y.-M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef] [Green Version]
  38. Zhao, T.-H.; Wang, M.-K.; Zhang, W.; Chu, Y.-M. Quadratic transformation inequalities for Gaussian hyper geometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef] [Green Version]
  39. Chu, Y.-M.; Zhao, T.-H. Concavity of the error function with respect to Hölder means. Math. Inequal. Appl. 2016, 19, 589–595. [Google Scholar] [CrossRef]
  40. Set, E.; Çelik, B.; Ozdemir, M.E.; Aslan, M. Some new results on Hermite-Hadamard-Cmercer-type inequalities using a general family of fractional integral operators. Fractal Fract. 2021, 5, 68. [Google Scholar] [CrossRef]
  41. Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions. Mathematics 2022, 10, 264. [Google Scholar] [CrossRef]
  42. Sun, W.B. Hermite-Hadamard type local fractional integral inequalities with Mittag-Leffler kernel for generalized preinvex functions. Fractals 2021, 29, 2150253. [Google Scholar] [CrossRef]
  43. Xu, P.; Butt, S.I.; Yousaf, S.; Aslam, A.; Zia, T.J. Generalized fractal Jensen-CMercer and Hermite-CMercer type inequalities via h-convex functions involving Mittag-CLeffler kernel. Alex. Eng. J. 2022, 61, 4837–4846. [Google Scholar] [CrossRef]
  44. Qian, W.-M.; Chu, H.-H.; Wang, M.-K.; Chu, Y.-M. Sharp inequalities for the Toader mean of order −1 in terms of other bivariate means. J. Math. Inequal. 2022, 16, 127–141. [Google Scholar] [CrossRef]
  45. Zhao, T.-H.; Chu, H.-H.; Chu, Y.-M. Optimal Lehmer mean bounds for the nth power-type Toader mean of n= −1, 1, 3. J. Math. Inequal. 2022, 16, 157–168. [Google Scholar] [CrossRef]
  46. Zhao, T.-H.; Wang, M.-K.; Dai, Y.-Q.; Chu, Y.-M. On the generalized power-type Toader mean. J. Math. Inequal. 2022, 16, 247–264. [Google Scholar] [CrossRef]
  47. Iqbal, S.A.; Hafez, M.G.; Chu, Y.-M.; Park, C. Dynamical Analysis of nonautonomous RLC circuit with the absence and presence of Atangana-Baleanu fractional derivative. J. Appl. Anal. Comput. 2022, 12, 770–789. [Google Scholar] [CrossRef]
  48. Huang, T.-R.; Chen, L.; Chu, Y.-M. Asymptotically sharp bounds for the complete p-elliptic integral of the first kind. Hokkaido Math. J. 2022, 51, 189–210. [Google Scholar] [CrossRef]
  49. Zhao, T.-H.; Qian, W.-M.; Chu, Y.-M. On approximating the arc lemniscate functions. Indian J. Pure Appl. Math. 2022, 53, 316–329. [Google Scholar] [CrossRef]
  50. Khan, M.B.; Savin Treanțǎ, H.; Alrweili, T.; Saeed, M.S. Soliman. Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Math. 2022, 7, 15659–15679. [Google Scholar] [CrossRef]
  51. Khan, M.B.; Alsalami, O.M.; Treanțǎ, S.; Saeed, T.; Nonlaopon, K. New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities. AIMS Math. 2022, 7, 15497–15519. [Google Scholar] [CrossRef]
  52. Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. [Google Scholar] [CrossRef]
  53. Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. [Google Scholar] [CrossRef]
  54. Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
  55. Wu, X.; Wang, J.R.; Zhang, J. Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel. Mathematics 2019, 7, 845. [Google Scholar] [CrossRef] [Green Version]
  56. Budak, H.; Sarikaya, M.Z.; Usta, F.; Yildirim, H. Some Hermite-Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel. Acta Comment. Univ. Tartu. Math. 2019, 23, 25–36. [Google Scholar] [CrossRef] [Green Version]
  57. Zhou, T.C.; Yuan, Z.R.; Du, T.S. On the fractional integral inclusions having exponential kernels for interval-valued convex functions. Math. Sci. 2021, 1–14. [Google Scholar] [CrossRef]
  58. Du, T.S.; Zhou, T.C. On the fractional double integral inclusion relations having exponential kernels via interval-valued coordinated convex mappings. Chaos Solitons Fractals 2022, 156, 111846. [Google Scholar] [CrossRef]
  59. Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef] [Green Version]
  60. Santos-García, G.; Khan, M.B.; Alrweili, H.; Alahmadi, A.A.; Ghoneim, S.S. Hermite–Hadamard and Pachpatte type inequalities for coordinated preinvex fuzzy-interval-valued functions pertaining to a fuzzy-interval double integral operator. Mathematics 2022, 10, 2756. [Google Scholar] [CrossRef]
  61. Macías-Díaz, J.E.; Khan, M.B.; Alrweili, H.; Soliman, M.S. Some Fuzzy Inequalities for Harmonically s-Convex Fuzzy Number Valued Functions in the Second Sense Integral. Symmetry 2022, 14, 1639. [Google Scholar] [CrossRef]
  62. Khan, M.B.; Noor, M.A.; Zaini, H.G.; Santos-García, G.; Soliman, M.S. The New Versions of Hermite–Hadamard Inequalities for Pre-invex Fuzzy-Interval-Valued Mappings via Fuzzy Riemann Integrals. Int. J. Comput. Intell. Syst. 2022, 15, 66. [Google Scholar] [CrossRef]
  63. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  64. Khan, M.B.; Noor, M.A.; Abdullah, L.; Chu, Y.M. Some new classes of preinvex fuzzy-interval-valued functions and inequalities. Int. J. Comput. Intell. Syst. 2021, 14, 1403–1418. [Google Scholar] [CrossRef]
  65. Liu, P.; Khan, M.B.; Noor, M.A.; Noor, K.I. New Hermite-Hadamard and Jensen inequalities for log-s-convex fuzzy-interval-valued functions in the second sense. Complex Intell. Syst. 2021, 8, 413–427. [Google Scholar] [CrossRef]
  66. Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
  67. Khan, M.B.; Treanțǎ, S.; Budak, H. Generalized p-Convex Fuzzy-Interval-Valued Functions and Inequalities Based upon the Fuzzy-Order Relation. Fractal Fract. 2022, 6, 63. [Google Scholar] [CrossRef]
  68. Moore, R.E. Methods and Applications of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
  69. Noor, M.A. Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
  70. Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
  71. Fejer, L. Uber die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss. 1906, 24, 369–390. (In Hungarian) [Google Scholar]
  72. Breckner, W.W. Continuity of generalized convex and generalized concave set–valued functions. Rev. Anal. Numér. Théor. Approx. 1993, 22, 39–51. [Google Scholar]
  73. Liu, Z.-H.; Motreanu, D.; Zeng, S.-D. Generalized penalty and regularization method for differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 1158–1183. [Google Scholar] [CrossRef]
  74. Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F.; Yao, J.-C.; Zeng, S.-D. Existence of solutions for a class of noncoercive variational–hemivariational inequalities arising in contact problems. Appl. Math. Optim. 2021, 84, 2037–2059. [Google Scholar] [CrossRef]
  75. Zeng, S.-D.; Migorski, S.; Liu, Z.-H. Well-posedness, optimal control, and sensitivity analysis for a class of differential variational- hemivariational inequalities. SIAM J. Optim. 2021, 31, 2829–2862. [Google Scholar] [CrossRef]
  76. Liu, Y.-J.; Liu, Z.-H.; Motreanu, D. Existence and approximated results of solutions for a class of nonlocal elliptic variational-hemivariational inequalities. Math. Methods Appl. Sci. 2020, 43, 9543–9556. [Google Scholar] [CrossRef]
  77. Liu, Y.-J.; Liu, Z.-H.; Wen, C.-F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discret. Contin. Dyn. Syst. Ser. B 2019, 24, 1297–1307. [Google Scholar] [CrossRef]
  78. Duc, D.T.; Hue, N.N.; Nhan, N.D.V.; Tuan, V.T. Convexity according to a pair of quasi-arithmetic means and inequalities. J. Math. Anal. Appl. 2020, 488, 124059. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Macías-Díaz, J.E.; Treanțǎ, S.; Soliman, M.S. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics 2022, 10, 3851. https://doi.org/10.3390/math10203851

AMA Style

Khan MB, Macías-Díaz JE, Treanțǎ S, Soliman MS. Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions. Mathematics. 2022; 10(20):3851. https://doi.org/10.3390/math10203851

Chicago/Turabian Style

Khan, Muhammad Bilal, Jorge E. Macías-Díaz, Savin Treanțǎ, and Mohamed S. Soliman. 2022. "Some Fejér-Type Inequalities for Generalized Interval-Valued Convex Functions" Mathematics 10, no. 20: 3851. https://doi.org/10.3390/math10203851

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop