Next Article in Journal
Research on a Risk Early Warning Mathematical Model Based on Data Mining in China’s Coal Mine Management
Next Article in Special Issue
A Measure-on-Graph-Valued Diffusion: A Particle System with Collisions and Its Applications
Previous Article in Journal
A Comprehensive Analysis of Chinese, Japanese, Korean, US-PIMA Indian, and Trinidadian Screening Scores for Diabetes Risk Assessment and Prediction
Previous Article in Special Issue
On the Numbers of Particles in Cells in an Allocation Scheme Having an Even Number of Particles in Each Cell
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Generating Functions for Four Classes of Triple Binomial Sums

1
School of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China
2
Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(21), 4025; https://doi.org/10.3390/math10214025
Submission received: 25 August 2022 / Revised: 21 October 2022 / Accepted: 24 October 2022 / Published: 30 October 2022
(This article belongs to the Special Issue Random Combinatorial Structures)

Abstract

:
By means of the generating function approach, four classes of triple sums involving circular products of binomial coefficients are investigated. Recurrence relations and rational generating functions are established.

1. Introduction and Motivation

Evaluating binomial sums has always been a fascinating topic in pure mathematics and applied sciences (cf. [1,2,3]). There exist numerous binomial identities (cf. [4,5,6,7,8]) and their multifold counterparts (cf. [9,10,11]), scattered in the literature. Different techniques (cf. Spivey [12]) have been utilized so far to treat binomial identities, such as integral representations [13], the hypergeometric series approach ([14] §5.5), and the creative telescoping [15].
For many combinatorial structures, the related counting and enumeration problems can efficiently be resolved by generating function techniques (cf. [16,17,18,19]). In particular, the generating function method is also powerful in computing convolution sums (see for example [20,21,22]). Kilic and Prodinger [23] found, by making use of generating functions and the Lagrange expansion theorem (cf. Comtet [1] §3.8), the following elegant binomial formulas (see [23] Theorems 1–3):
F 4 n 1 = i = 0 n j = 0 n n + i 2 j n + j 2 i ,
F 4 n 3 = i = 0 n j = 0 n n + i 2 j + 1 n + j 2 i + 1 ,
F 4 n = i = 0 n j = 1 n n + i 2 j 1 n + j 2 i ;
where F n stands for the Fibonacci number (cf. [24]). By carrying out the same procedure of Kilic and Prodinger, it is not hard to show the following further results:
  • There is an extra analogous identity
    F 4 n 2 = i = 0 n j = 0 n n + i 2 j n + j 2 i + 1 .
  • For the three alternating sums defined by
    Φ a ( n ) = i = 0 n j = 0 n ( 1 ) i + j n + i 2 j n + j 2 i , Φ b ( n ) = i = 0 n j = 0 n ( 1 ) i + j n + i 2 j n + j + 1 2 i + 1 , Φ c ( n ) = i = 0 n j = 0 n ( 1 ) i + j n + i + 1 2 j + 1 n + j + 1 2 i + 1 ;
    they satisfy the common recurrence relation
    Φ ( n ) = 3 Φ ( n 1 ) + 3 Φ ( n 2 ) + 4 Φ ( n 3 )
    with different initial values
    Φ a ( 0 ) = 1 , Φ a ( 1 ) = 2 , Φ a ( 2 ) = 9 ; Φ b ( 0 ) = 1 , Φ b ( 1 ) = 3 , Φ b ( 2 ) = 11 ; Φ c ( 0 ) = 1 , Φ c ( 1 ) = 5 , Φ c ( 2 ) = 18 .
  • For the three (partially alternating) sums defined by
    Ψ a ( n ) = i = 0 n j = 0 n ( 1 ) i n + i 2 j n + j 2 i , Ψ b ( n ) = i = 0 n j = 0 n ( 1 ) i n + i 2 j n + j + 1 2 i + 1 , Ψ c ( n ) = i = 0 n j = 0 n ( 1 ) i n + i + 1 2 j + 1 n + j + 1 2 i + 1 ;
    they satisfy the same recurrence relation
    Ψ ( n ) = Ψ ( n 1 ) 13 Ψ ( n 2 ) 4 Ψ ( n 3 )
    with different initial values
    Ψ a ( 0 ) = 1 , Ψ a ( 1 ) = 0 , Ψ a ( 2 ) = 7 ; Ψ b ( 0 ) = 1 , Ψ b ( 1 ) = 1 , Ψ b ( 2 ) = 5 ; Ψ c ( 0 ) = 1 , Ψ c ( 1 ) = 3 , Ψ c ( 2 ) = 6 .
As demanded by an anonymous referee, a sample proof for the recurrence relation satisfied by Φ c ( n ) is appended at the end of Section 5. For more circular binomial sums, the reader can consult the papers [10,25,26].
Motivated by these remarkable results, we shall examine four classes of triple circular sums by means of the generating function approach (cf. Wilf [27] and [28,29,30]). They will be divided into four separate sections. What remarkable is that the four triple sums in each class satisfy the same recurrence relation. The rational generating functions for these triple sums will be determined explicitly. In order to ensure accuracy, all the displayed mathematical expressions are numerically verified throughout the paper by appropriately devised “Mathematica” commands. In addition, we declare that all the power series appearing in this paper are convergent in the neighborhood of zero.

2. Positive Triple Sums

This section will be devoted to the four positive triple sums defined by
T a ( n ) : = i = 0 n j = 0 n k = 0 n n + i 2 j n + j 2 k n + k 2 i ,
T b ( n ) : = i = 0 n j = 0 n k = 0 n n + i 2 j n + j 2 k n + k + 1 2 i + 1 ,
T c ( n ) : = i = 0 n j = 0 n k = 0 n n + i 2 j n + j + 1 2 k + 1 n + k + 1 2 i + 1 ,
T d ( n ) : = i = 0 n j = 0 n k = 0 n n + i + 1 2 j + 1 n + j + 1 2 k + 1 n + k + 1 2 i + 1 .
These sums satisfy a common recurrence relation and admit compactly rational generating functions. The main results are enunciated as follows.
Lemma 1 (Coefficient expressions).
( a ) T a ( n ) = [ x 7 n ] ( 1 2 x 2 ) ( 1 + x ) n ( 1 x 2 ) 2 n + 1 ( 1 x x 2 ) ( 1 + x 2 x 2 x 3 + x 4 + x 6 ) ,
( b ) T b ( n ) = [ x 7 n ] ( 1 2 x 2 ) ( 1 + x ) n + 1 ( 1 x 2 ) 2 n + 1 ( 1 x x 2 ) ( 1 + x 2 x 2 x 3 + x 4 + x 6 ) ,
( c ) T c ( n ) = [ x 7 n ] ( 1 + x ) n + 1 ( 1 x 2 ) 2 n + 3 ( 1 x x 2 ) ( 1 + x 2 x 2 x 3 + x 4 + x 6 ) ,
( d ) T d ( n ) = [ x 7 n ] ( 1 + x ) n + 1 ( 1 x 2 ) 2 n + 2 ( 1 x x 2 ) ( 1 + x 2 x 2 x 3 + x 4 + x 6 ) .
Proposition 1. 
The four triple sums { T a ( n ) , T b ( n ) , T c ( n ) , T d ( n ) } satisfy the same recurrence relation
T ( n ) = 17 T ( n 1 ) + 16 T ( n 2 ) + 17 T ( n 3 ) T ( n 4 )
with different initial values
{ T a ( n ) } n = 0 3 = 1 , 2 , 41 , 745 , { T b ( n ) } n = 0 3 = 1 , 3 , 67 , 1205 , { T c ( n ) } n = 0 3 = 1 , 5 , 109 , 1949 , { T d ( n ) } n = 0 3 = 1 , 9 , 176 , 3153 .
Theorem 1 (Generating functions).
( a ) n = 0 T a ( n ) y n = 1 15 y 9 y 2 y 3 ( 1 + y + y 2 ) ( 1 18 y + y 2 ) ,
( b ) n = 0 T b ( n ) y n = 1 14 y + y 3 ( 1 + y + y 2 ) ( 1 18 y + y 2 ) ,
( c ) n = 0 T c ( n ) y n = 1 12 y + 8 y 2 y 3 ( 1 + y + y 2 ) ( 1 18 y + y 2 ) ,
( d ) n = 0 T d ( n ) y n = ( 1 y ) ( 1 7 y ) ( 1 + y + y 2 ) ( 1 18 y + y 2 ) .
By examining two differences of the above generating functions
( 12 ) + ( 13 ) ( 14 ) = 1 y 2 1 y 3 , ( 13 ) + ( 14 ) ( 15 ) = 1 y 1 y 3 ;
we find that the triples sums { T a ( n ) , T b ( n ) , T c ( n ) , T d ( n ) } satisfy the following remarkable relations
T a ( n ) + T b ( n ) T c ( n ) = 1 , n = 0 ( mod 3 ) ; 0 , n = 1 ( mod 3 ) ; 1 , n = 2 ( mod 3 ) ;
T b ( n ) + T c ( n ) T d ( n ) = 1 , n = 0 ( mod 3 ) ; 1 , n = 1 ( mod 3 ) ; 0 , n = 2 ( mod 3 ) .
However, there exist no such simple relations for other triple sums with alternating signs treated in the remaining next sections of this paper.
We take T a ( n ) as an example to show how to derive expression (8) in Lemma 1, recurrence relation in Proposition 1 and generating function (12) in Theorem 1. Other results can be found analogously.

2.1. Proof of Lemma 1

For a non-negative integer k, let [ x k ] ϕ ( x ) stand for the coefficient of x k in the formal power series ϕ ( x ) . By means of the following two relations
n + i 2 j = [ x 2 n + 2 i ] x 4 j ( 1 x 2 ) 2 j + 1 , n + k 2 i = [ x n + k 2 i ] ( 1 + x ) n + k ,
the binomial sum with respect to i in T a ( n ) can be expressed as
T a i ( n ) : = i = 0 n n + i 2 j n + k 2 i = [ x 3 n + k ] x 4 j ( 1 + x ) n + k ( 1 x 2 ) 2 j + 1 .
Then, we can proceed with the binomial sum with respect to j in T a ( n )
T a j ( n ) : = j = 0 n n + j 2 k T a i ( n ) = [ x 3 n + k ] ( 1 + x ) n + k 1 x 2 j = 0 n + j 2 k x 4 j ( 1 x 2 ) 2 j ,
where the upper limit of the sum is released to because the corresponding coefficient of x 3 n + k becomes 0 when j > n .
For the last series, performing the replacement j m n on the summation index and then writing y = x 4 ( 1 x 2 ) 2 , we can evaluate it as follows:
j = 0 n + j 2 k x 4 j ( 1 x 2 ) 2 j = m = n m 2 k y m n = m = 2 k m 2 k y m n m = 2 k n 1 m 2 k y m n = y 2 k n ( 1 y ) 2 k + 1 m = 2 k n 1 m 2 k y m n = x 8 k 4 n ( 1 x 2 ) 2 n + 2 ( 1 2 x 2 ) 2 k + 1 m = 2 k n 1 m 2 k x 4 m 4 n ( 1 x 2 ) 2 m 2 n .
From this, we obtain the following closed expression:
T a j ( n ) = [ x 3 n + k ] x 8 k 4 n ( 1 + x ) n + k ( 1 x 2 ) 2 n + 1 ( 1 2 x 2 ) 2 k + 1 = [ x 7 n ] x 7 k ( 1 + x ) n + k ( 1 x 2 ) 2 n + 1 ( 1 2 x 2 ) 2 k + 1 .
This is justified by the fact that the contribution from the sum in (18) is annihilated by [ x 7 n ] , since for n > 2 k , the following corresponding sum results in a Laurent polynomial with its highest exponent equal to n + k 2 < 3 n + k :
( 1 + x ) n + k 1 x 2 m = 2 k n 1 m 2 k x 4 m 4 n ( 1 x 2 ) 2 m 2 n = m = 2 k n 1 m 2 k x 4 m 4 n ( 1 + x ) n + k ( 1 x 2 ) 2 m 2 n + 1 .
Consequently, the remaining binomial sum with respect to k in T a ( n ) reads as
T a ( n ) = k = 0 n T a j ( n ) = [ x 7 n ] ( 1 + x ) n ( 1 x 2 ) 2 n + 1 1 2 x 2 k = 0 x 7 k ( 1 + x ) k ( 1 2 x 2 ) 2 k .
Evaluating the last series gives rise to
T a ( n ) = [ x 7 n ] P n ( x ) ,
where P n ( x ) is a rational function defined by
P n ( x ) : = ( 1 2 x 2 ) ( 1 + x ) n ( 1 x 2 ) 2 n + 1 ( 1 x x 2 ) ( 1 + x 2 x 2 x 3 + x 4 + x 6 ) .
This validates the first expression (8) in Lemma 1.

2.2. Proof of Proposition 1

To prove the recurrence relation in Proposition 1, we rewrite it alternatively by
Δ a ( n ) : = T a ( n ) 17 T a ( n 1 ) 16 T a ( n 2 ) 17 T a ( n 3 ) + T a ( n 4 ) = [ x 7 n ] P n ( x ) 17 x 7 P n 1 ( x ) 16 x 14 P n 2 ( x ) 17 x 21 P n 3 ( x ) + x 28 P n 4 ( x ) .
By factorizing the expression inside the braces “ { } ”, we obtain
Δ a ( n ) = [ x 7 n ] P ( x ) ,
where P ( x ) is a Laurent polynomial given explicitly by
P ( x ) : = ( 1 x ) 2 n 7 ( 1 + x ) 3 n 11 ( 1 2 x 2 ) ( 1 + x 2 x 2 3 x 3 + x 4 + 2 x 5 + x 8 ) × 1 + 3 x + x 2 4 x 3 x 4 + 7 x 5 + 8 x 6 11 x 7 24 x 8 + 3 x 9 + 16 x 10 + x 11 x 12 .
When n 4 , it is obvious that P ( x ) results in a polynomial of degree 4 + 5 n < 7 n . Therefore the coefficient [ x 7 n ] P ( x ) vanishes, which confirms the recurrence relation Δ a ( n ) = 0 as in Proposition 1.

2.3. Proof of Theorem 1

According to Proposition 1, we can manipulate the following generating function:
P ( y ) : = n = 0 T a ( n ) y n = T a ( 0 ) + T a ( 1 ) y + T a ( 2 ) y 2 + T a ( 3 ) y 3 + n = 4 T a ( n ) y n = T a ( 0 ) + T a ( 1 ) y + T a ( 2 ) y 2 + T a ( 3 ) y 3 + n = 4 y n 17 T a ( n 1 ) + 16 T a ( n 2 ) + 17 T a ( n 3 ) T a ( n 4 ) = T a ( 0 ) + T a ( 1 ) y + T a ( 2 ) y 2 + T a ( 3 ) y 3 + 17 y n = 3 T a ( n ) y n + 16 y 2 n = 2 T a ( n ) y n + 17 y 3 n = 1 T a ( n ) y n y 4 n = 0 T a ( n ) y n = T a ( 0 ) + T a ( 1 ) y + T a ( 2 ) y 2 + T a ( 3 ) y 3 + P ( y ) 17 y + 16 y 2 + 17 y 3 y 4 17 y T a ( 0 ) + T a ( 1 ) y + T a ( 2 ) y 2 16 y 2 T a ( 0 ) + T a ( 1 ) y 17 y 3 T a ( 0 ) .
Finally, by computing the initial values
{ T a ( n ) } n = 0 3 = 1 , 2 , 41 , 745
and then simplifying the last expression, we have a functional equation
P ( y ) = 1 15 y 9 y 2 y 3 + P ( y ) 17 y + 16 y 2 + 17 y 3 y 4 ,
which is equivalent to the following generating function as in Theorem 1:
P ( y ) = 1 15 y 9 y 2 y 3 1 17 y 16 y 2 17 y 3 + y 4 = 1 15 y 9 y 2 y 3 ( 1 + y + y 2 ) ( 1 18 y + y 2 ) .

3. Alternating Triple Sums

For the four alternating triple sums defined by
U a ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i + j + k n + i 2 j n + j 2 k n + k 2 i ,
U b ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i + j + k n + i 2 j n + j 2 k n + k + 1 2 i + 1 ,
U c ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i + j + k n + i 2 j n + j + 1 2 k + 1 n + k + 1 2 i + 1 ,
U d ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i + j + k n + i + 1 2 j + 1 n + j + 1 2 k + 1 n + k + 1 2 i + 1 ;
the related results about recurrence relations and generating functions are simpler compared with those in the last section. They are highlighted as follows.
Lemma 2 (Coefficient expressions).
( a ) U a ( n ) = [ x 7 n ] ( 1 + 2 x 2 + 2 x 4 ) ( 1 + x ) n ( 1 + x 2 ) 2 n + 1 ( 1 + x + x 2 ) ( 1 x + 4 x 2 3 x 3 + 7 x 4 4 x 5 + 5 x 6 ) ,
( b ) U b ( n ) = [ x 7 n ] ( 1 + 2 x 2 + 2 x 4 ) ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 1 ( 1 + x + x 2 ) ( 1 x + 4 x 2 3 x 3 + 7 x 4 4 x 5 + 5 x 6 ) ,
( c ) U c ( n ) = [ x 7 n ] ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 3 ( 1 + x + x 2 ) ( 1 x + 4 x 2 3 x 3 + 7 x 4 4 x 5 + 5 x 6 ) ,
( d ) U d ( n ) = [ x 7 n ] ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 2 ( 1 + x + x 2 ) ( 1 x + 4 x 2 3 x 3 + 7 x 4 4 x 5 + 5 x 6 ) .
Proposition 2. 
The four triple sums { U a ( n ) , U b ( n ) , U c ( n ) , U d ( n ) } satisfy the same recurrence relation
U ( n ) = 24 U ( n 2 ) 25 U ( n 3 )
with different initial values
{ U a ( n ) } n = 0 2 = 1 , 0 , 19 , { U b ( n ) } n = 0 2 = 1 , 1 , 21 , { U c ( n ) } n = 0 2 = 1 , 3 , 25 , { U d ( n ) } n = 0 2 = 1 , 7 , 24 .
Theorem 2 (Generating functions).
( a ) n = 0 U a ( n ) y n = 1 + 5 y 2 1 + 24 y 2 + 25 y 3 ,
( b ) n = 0 U b ( n ) y n = 1 + y + 3 y 2 1 + 24 y 2 + 25 y 3 ,
( c ) n = 0 U c ( n ) y n = 1 + 3 y y 2 1 + 24 y 2 + 25 y 3 ,
( d ) n = 0 U d ( n ) y n = 1 + 7 y 1 + 24 y 2 + 25 y 3 .
Since proofs of the above results are quite similar, we present only demonstrations for U b ( n ) about expression (24) in Lemma 2, recurrence relation in Proposition 2 and generating function (28) in Theorem 2.

3.1. Proof of Lemma 2

According to the binomial relations
( 1 ) i n + i 2 j = [ x 2 n + 2 i ] ( 1 ) n x 4 j ( 1 + x 2 ) 2 j + 1 , n + k + 1 2 i + 1 = [ x n + k 2 i ] ( 1 + x ) n + k + 1 ,
we can express the binomial sum with respect to i in U b ( n ) as
U b i ( n ) : = i = 0 n ( 1 ) i n + i 2 j n + k + 1 2 i + 1 = [ x 3 n + k ] ( 1 ) n x 4 j ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 j + 1 .
Then we can treat the binomial sum with respect to j in U b ( n )
U b j ( n ) : = j = 0 n ( 1 ) j n + j 2 k U b i ( n ) = [ x 3 n + k ] ( 1 ) n ( 1 + x ) n + k + 1 1 + x 2 j = 0 ( 1 ) j n + j 2 k x 4 j ( 1 + x 2 ) 2 j .
Evaluating the last series under y = x 4 ( 1 + x 2 ) 2 , and then following the same discussion as for (18), we derive the closed expression below
U b j ( n ) = [ x 3 n + k ] ( 1 + x ) n + k + 1 1 + x 2 y 2 k n ( 1 + y ) 2 k + 1 [ x 3 n + k ] ( 1 + x ) n + k + 1 1 + x 2 m = 2 k n 1 ( 1 ) m m 2 k y m n = [ x 3 n + k ] x 8 k 4 n ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 n + 1 ( 1 + 2 x 2 + 2 x 4 ) 2 k + 1 = [ x 7 n ] x 7 k ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 n + 1 ( 1 + 2 x 2 + 2 x 4 ) 2 k + 1 .
Now, we come to the binomial sum with respect to k in U b ( n )
U b ( n ) = k = 0 n ( 1 ) k U b j ( n ) = [ x 7 n ] ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 1 1 + 2 x 2 + 2 x 4 k = 0 ( 1 ) k x 7 k ( 1 + x ) k ( 1 + 2 x 2 + 2 x 4 ) 2 k .
Evaluating the last series yields
U b ( n ) = [ x 7 n ] F n ( x ) ,
where F n ( x ) is a rational function defined by
F n ( x ) : = ( 1 + 2 x 2 + 2 x 4 ) ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 1 ( 1 + 2 x 2 + 2 x 4 ) 2 + x 7 + x 8 .
This confirms the first expression (24) in Lemma 2.

3.2. Proof of Proposition 2

The recurrence relation in Proposition 2 follows by considering
Δ b ( n ) : = U b ( n ) + 24 U b ( n 2 ) + 25 U b ( n 3 ) = [ x 7 n ] F n ( x ) + 24 x 14 F n 2 ( x ) + 25 x 21 F n 3 ( x ) .
This can further be simplified by factorization
Δ b ( n ) = [ x 7 n ] F ( x ) ,
where F ( x ) is given explicitly by
F ( x ) : = ( 1 + 2 x 2 + 2 x 4 ) ( 1 + x ) n 2 ( 1 + x 2 ) 2 n 5 ( 1 + x 2 + x 3 x 4 + x 5 ) × ( 1 + 3 x + 4 x 2 + 3 x 3 x 4 6 x 5 4 x 6 + 4 x 7 + 5 x 8 ) .
When n 3 , we find that Δ b ( n ) = 0 because in this case, F ( x ) is a polynomial of degree 5 + 5 n < 7 n .

3.3. Proof of Theorem 2

By making use of the recurrence relation in Proposition 2, we turn to treat the generating function
F ( y ) : = n = 0 U b ( n ) y n = U b ( 0 ) + U b ( 1 ) y + U b ( 2 ) y 2 + n = 3 U b ( n ) y n = U b ( 0 ) + U b ( 1 ) y + U b ( 2 ) y 2 + n = 3 y n 24 T a ( n 2 ) 25 T a ( n 3 ) = U b ( 0 ) + U b ( 1 ) y + U b ( 2 ) y 2 24 y 2 n = 1 U b ( n ) y n 25 y 3 n = 0 U b ( n ) y n = U b ( 0 ) + U b ( 1 ) y + U b ( 2 ) y 2 + F ( y ) 24 y 2 25 y 3 + 24 y 2 U b ( 0 ) .
Finally, taking into account of the initial values
{ U b ( n ) } n = 0 2 = 1 , 1 , 21 ,
and then simplifying the last expression, we find that
F ( y ) = 1 + y + 3 y 2 F ( y ) 24 y 2 + 25 y 3 ,
which is equivalent to the following generating function as in Theorem 2:
F ( y ) = 1 + y + 3 y 2 1 + 24 y 2 + 25 y 3 .

4. Triple Sums with One Alternating Factor

Further for the four (partially alternating) triple sums defined by
V a ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i n + i 2 j n + j 2 k n + k 2 i ,
V b ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i n + i 2 j n + j 2 k n + k + 1 2 i + 1 ,
V c ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i n + i 2 j n + j + 1 2 k + 1 n + k + 1 2 i + 1 ,
V d ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i n + i + 1 2 j + 1 n + j + 1 2 k + 1 n + k + 1 2 i + 1 ;
the related results about recurrence relations and generating functions are more involved. They are summarized in the following statements.
Lemma 3 (Coefficient expressions).
( a ) V a ( n ) = [ x 7 n ] ( 1 ) n ( 1 + 2 x 2 ) ( 1 + x ) n ( 1 + x 2 ) 2 n + 1 1 + 4 x 2 + 4 x 4 x 7 x 8 ,
( b ) V b ( n ) = [ x 7 n ] ( 1 ) n ( 1 + 2 x 2 ) ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 1 1 + 4 x 2 + 4 x 4 x 7 x 8 ,
( c ) V c ( n ) = [ x 7 n ] ( 1 ) n ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 3 1 + 4 x 2 + 4 x 4 x 7 x 8 ,
( d ) V d ( n ) = [ x 7 n ] ( 1 ) n ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 2 1 + 4 x 2 + 4 x 4 x 7 x 8 .
Proposition 3. 
The four triple sums { V a ( n ) , V b ( n ) , V c ( n ) , V d ( n ) } satisfy the same recurrence relation
V ( n ) = V ( n 1 ) 105 V ( n 2 ) 210 V ( n 3 ) 174 V ( n 4 ) 370 V ( n 5 ) + 175 V ( n 6 ) + 17 V ( n 7 ) 9 V ( n 8 )
with different initial values
{ V a ( n ) } n = 0 7 = 1 , 0 , 27 , 113 , 2624 , 19915 , 227039 , 2839488 , { V b ( n ) } n = 0 7 = 1 , 1 , 21 , 281 , 1571 , 35001 , 67471 , 4015639 , { V c ( n ) } n = 0 7 = 1 , 3 , 25 , 533 , 1417 , 61665 , 28265 , 6641605 , { V d ( n ) } n = 0 7 = 1 , 7 , 40 , 897 , 1761 , 102704 , 110721 , 10870889 .
Theorem 3 (Generating functions).
( a ) n = 0 V a ( n ) y n = 1 y + 78 y 2 + 124 y 3 + 76 y 4 + 126 y 5 37 y 6 3 y 7 1 y + 105 y 2 + 210 y 3 + 174 y 4 + 370 y 5 175 y 6 17 y 7 + 9 y 8 ,
( b ) n = 0 V b ( n ) y n = 1 + 83 y 2 + 55 y 3 + 31 y 4 + 59 y 5 + 14 y 6 9 y 7 1 y + 105 y 2 + 210 y 3 + 174 y 4 + 370 y 5 175 y 6 17 y 7 + 9 y 8 ,
( c ) n = 0 V c ( n ) y n = 1 + 2 y + 77 y 2 + 17 y 3 + 129 y 4 75 y 5 + 40 y 6 9 y 7 1 y + 105 y 2 + 210 y 3 + 174 y 4 + 370 y 5 175 y 6 17 y 7 + 9 y 8 ,
( d ) n = 0 V d ( n ) y n = 1 + 6 y + 58 y 2 + 88 y 3 + 102 y 4 54 y 5 + 7 y 6 1 y + 105 y 2 + 210 y 3 + 174 y 4 + 370 y 5 175 y 6 17 y 7 + 9 y 8 .
In what follows, we are going to illustrate for V c ( n ) about how to establish expression (38) in Lemma 3, recurrence relation in Proposition 3 and generating function (42) in Theorem 3. The proofs for the remaining results are omitted for similarities.

4.1. Proof of Lemma 3

Since the binomial sum with respect to i in V c ( n ) is the same as U b i ( n ) , we can immediately write down
V c i ( n ) : = i = 0 n ( 1 ) i n + i 2 j n + k + 1 2 i + 1 = [ x 3 n + k ] ( 1 ) n x 4 j ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 j + 1 .
Then we can deal with the binomial sum with respect to j in V c ( n )
V c j ( n ) : = j = 0 n n + j + 1 2 k + 1 V c i ( n ) = [ x 3 n + k ] ( 1 ) n ( 1 + x ) n + k + 1 1 + x 2 j = 0 n + j + 1 2 k + 1 x 4 j ( 1 + x 2 ) 2 j .
Evaluating the last series under y = x 4 ( 1 + x 2 ) 2 , and then making a similar reasoning as for (18), we have the following closed expression
V c j ( n ) = [ x 3 n + k ] ( 1 ) n ( 1 + x ) n + k + 1 1 + x 2 y 2 k n ( 1 y ) 2 k + 2 [ x 3 n + k ] ( 1 ) n ( 1 + x ) n + k + 1 1 + x 2 m = 2 k n 1 m + 1 2 k + 1 y m n = [ x 3 n + k ] ( 1 ) n x 8 k 4 n ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 n + 3 ( 1 + 2 x 2 ) 2 k + 2 = [ x 7 n ] ( 1 ) n x 7 k ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 n + 3 ( 1 + 2 x 2 ) 2 k + 2 .
Consequently, the binomial sum with respect to k in V c ( n ) becomes
V c ( n ) = k = 0 n V c j ( n ) = [ x 7 n ] ( 1 ) n ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 3 ( 1 + 2 x 2 ) 2 k = 0 x 7 k ( 1 + x ) k ( 1 + 2 x 2 ) 2 k .
By evaluating the last series, we have further
V c ( n ) = [ x 7 n ] G n ( x ) ,
where G n ( x ) is a rational function defined by
G n ( x ) : = ( 1 ) n ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 3 1 + 4 x 2 + 4 x 4 x 7 x 8 .
This proves the first expression (37) as in Lemma 3.

4.2. Proof of Proposition 3

The recurrence relation in Proposition 3 follows by examining
Δ c ( n ) : = V c ( n ) V c ( n 1 ) + 105 V c ( n 2 ) + 210 V c ( n 3 ) + 174 V c ( n 4 ) + 370 V c ( n 5 ) 175 V c ( n 6 ) 17 V c ( n 7 ) + 9 V c ( n 8 ) = [ x 7 n ] { G n ( x ) x 7 G n 1 ( x ) + 105 x 14 G n 2 ( x ) + 210 x 21 G n 3 ( x ) + 174 x 28 G n 4 ( x ) + 370 x 35 G n 5 ( x ) 175 x 42 G n 6 ( x ) 17 x 49 G n 7 ( x ) + 9 x 56 G n 8 ( x ) } .
The above expression can be simplified into
Δ c ( n ) = ( 1 ) n [ x 7 n ] G ( x ) ,
where G ( x ) is a Laurent polynomial given by
G ( x ) : = ( 1 + x ) n 7 ( 1 + x 2 ) 2 n 13 { 1 + 8 x + 40 x 2 + 152 x 3 + 474 x 4 + 1272 x 5 + 3012 x 6 + 6410 x 7 + 12421 x 8 + 22123 x 9 + 36497 x 10 + 56098 x 11 + 80734 x 12 + 109244 x 13 + 139575 x 14 + 169157 x 15 + 195689 x 16 + 218068 x 17 + 236920 x 18 + 254914 x 19 + 275629 x 20 + 301957 x 21 + 334535 x 22 + 369778 x 23 + 400796 x 24 + 418950 x 25 + 416333 x 26 + 389845 x 27 + 341563 x 28 + 278638 x 29 + 211582 x 30 + 149708 x 31 + 99658 x 32 + 63991 x 33 + 40997 x 34 + 27276 x 35 + 19162 x 36 + 13660 x 37 + 9361 x 38 + 6059 x 39 + 3444 x 40 + 1733 x 41 + 832 x 42 + 256 x 43 + 96 x 44 + 9 x 45 26 x 46 + 9 x 47 9 x 48 } .
When n 8 , this is a polynomial of degree 15 + 5 n < 7 n , which implies the recurrence relation Δ c ( n ) = 0 as in Proposition 3.

4.3. Proof of Theorem 3

Finally, for the generating function
G ( y ) : = n = 0 V c ( n ) y n = V c ( 0 ) + V c ( 1 ) y + V c ( 2 ) y 2 + V c ( 3 ) y 3 + V c ( 4 ) y 4 + V c ( 5 ) y 5 + V c ( 6 ) y 6 + V c ( 7 ) y 7 + n = 8 V c ( n ) y n ,
replacing V c ( n ) by the recurrence relation in Proposition 3 and then applying the initial values
{ V c ( n ) } n = 0 7 = 1 , 3 , 25 , 533 , 1417 , 61665 , 28265 , 6641605 ,
we obtain the following simplified equation
G ( y ) = 1 + 2 y + 77 y 2 + 17 y 3 + 129 y 4 75 y 5 + 40 y 6 9 y 7 + G ( y ) y 105 y 2 210 y 3 174 y 4 370 y 5 + 175 y 6 + 17 y 7 9 y 8 ,
which confirms the generating function as in Theorem 3
G ( y ) = 1 + 2 y + 77 y 2 + 17 y 3 + 129 y 4 75 y 5 + 40 y 6 9 y 7 1 y + 105 y 2 + 210 y 3 + 174 y 4 + 370 y 5 175 y 6 17 y 7 + 9 y 8 .

5. Triple Sums with Two Alternating Factors

Finally, define four further variants of alternating triple sums
W a ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i + j n + i 2 j n + j 2 k n + k 2 i ,
W b ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i + j n + i 2 j n + j 2 k n + k + 1 2 i + 1 ,
W c ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i + j n + i 2 j n + j + 1 2 k + 1 n + k + 1 2 i + 1 ,
W d ( n ) : = i = 0 n j = 0 n k = 0 n ( 1 ) i + j n + i + 1 2 j + 1 n + j + 1 2 k + 1 n + k + 1 2 i + 1 .
We have the following results about recurrence relations and generating functions.
Lemma 4 (Coefficient expressions).
( a ) W a ( n ) = [ x 7 n ] ( 1 + 2 x 2 + 2 x 4 ) ( 1 + x ) n ( 1 + x 2 ) 2 n + 1 1 + 4 x 2 + 8 x 4 + 8 x 6 x 7 + 3 x 8 ,
( b ) W b ( n ) = [ x 7 n ] ( 1 + 2 x 2 + 2 x 4 ) ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 1 1 + 4 x 2 + 8 x 4 + 8 x 6 x 7 + 3 x 8 ,
( c ) W c ( n ) = [ x 7 n ] ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 3 1 + 4 x 2 + 8 x 4 + 8 x 6 x 7 + 3 x 8 ,
( d ) W d ( n ) = [ x 7 n ] ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 2 1 + 4 x 2 + 8 x 4 + 8 x 6 x 7 + 3 x 8 .
Proposition 4. 
The four triple sums { W a ( n ) , W b ( n ) , W c ( n ) , W d ( n ) } satisfy the same recurrence relation
W ( n ) = 15 W ( n 1 ) 17 W ( n 2 ) 334 W ( n 3 ) 318 W ( n 4 ) + 2370 W ( n 5 ) 1889 W ( n 6 ) 449 W ( n 7 ) 225 W ( n 8 )
with different initial values
{ W a ( n ) } n = 0 7 = 1 , 2 , 25 , 209 , 1906 , 17569 , 156641 , 1402914 , { W b ( n ) } n = 0 7 = 1 , 3 , 27 , 249 , 2067 , 18103 , 150513 , 1238083 , { W c ( n ) } n = 0 7 = 1 , 5 , 39 , 373 , 2949 , 25223 , 201417 , 1571445 , { W d ( n ) } n = 0 7 = 1 , 9 , 64 , 657 , 5737 , 52544 , 469953 , 4165193 .
Theorem 4 (Generating functions).
( a ) n = 0 W a ( n ) y n = 1 13 y + 12 y 2 + 202 y 3 + 182 y 4 852 y 5 + 413 y 6 + 15 y 7 1 15 y + 17 y 2 + 334 y 3 + 318 y 4 2370 y 5 + 1889 y 6 + 449 y 7 + 225 y 8 ,
( b ) n = 0 W b ( n ) y n = 1 12 y y 2 + 229 y 3 + 111 y 4 1067 y 5 + 638 y 6 175 y 7 1 15 y + 17 y 2 + 334 y 3 + 318 y 4 2370 y 5 + 1889 y 6 + 449 y 7 + 225 y 8 ,
( c ) n = 0 W c ( n ) y n = 1 10 y 19 y 2 + 207 y 3 + 5 y 4 425 y 5 + 228 y 6 + 25 y 7 1 15 y + 17 y 2 + 334 y 3 + 318 y 4 2370 y 5 + 1889 y 6 + 449 y 7 + 225 y 8 ,
( d ) n = 0 W d ( n ) y n = 1 6 y 54 y 2 + 184 y 3 + 294 y 4 474 y 5 329 y 6 1 15 y + 17 y 2 + 334 y 3 + 318 y 4 2370 y 5 + 1889 y 6 + 449 y 7 + 225 y 8 .
For the triple sum W d ( n ) , we give a detailed proof for expression (51) in Lemma 4, recurrence relation in Proposition 4 and generating function (55) in Theorem 4. The other results for triple sums W a ( n ) , W b ( n ) and W c ( n ) can be confirmed likewise.

5.1. Proof of Lemma 4

By combining (31) with
( 1 ) i n + i + 1 2 j + 1 = [ x 2 n + 2 i ] ( 1 ) n x 4 j ( 1 + x 2 ) 2 j + 2 ,
we can rewrite the binomial sum with respect to i in W d ( n ) as
W d i ( n ) : = i = 0 n ( 1 ) i n + i + 1 2 j + 1 n + k + 1 2 i + 1 = [ x 3 n + k ] ( 1 ) n x 4 j ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 j + 2 .
Then, the binomial sum with respect to j in W d ( n ) can be expressed as
W d j ( n ) : = j = 0 n ( 1 ) j n + j + 1 2 k + 1 W d i ( n ) = [ x 3 n + k ] ( 1 ) n ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 j = 0 ( 1 ) j n + j + 1 2 k + 1 x 4 j ( 1 + x 2 ) 2 j .
Evaluating the last series under y = x 4 ( 1 + x 2 ) 2 , and then following a similar argument as for (18), we have the following closed expression:
W d j ( n ) = [ x 3 n + k ] ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 y 2 k n ( 1 + y ) 2 k + 2 [ x 3 n + k ] ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 m = 2 k n 1 ( 1 ) m m + 1 2 k + 1 y m n = [ x 3 n + k ] x 8 k 4 n ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 n + 2 ( 1 + 2 x 2 + 2 x 4 ) 2 k + 2 = [ x 7 n ] x 7 k ( 1 + x ) n + k + 1 ( 1 + x 2 ) 2 n + 2 ( 1 + 2 x 2 + 2 x 4 ) 2 k + 2 .
Next, we turn to handle the binomial sum with respect to k in W d ( n )
W d ( n ) = k = 0 n W d j ( n ) = [ x 7 n ] ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 2 ( 1 + 2 x 2 + 2 x 4 ) 2 k = 0 x 7 k ( 1 + x ) k ( 1 + 2 x 2 + 2 x 4 ) 2 k .
Evaluating the last series, we have
W d ( n ) = [ x 7 n ] H n ( x ) ,
where H n ( x ) is a rational function defined by
H n ( x ) : = ( 1 + x ) n + 1 ( 1 + x 2 ) 2 n + 2 ( 1 + 2 x 2 + 2 x 4 ) 2 x 7 x 8 .
This validates the first expression (49) in Lemma 4.

5.2. Proof of Proposition 4

The recurrence relation in Proposition 4 follows by considering the difference
Δ d ( n ) : = W d ( n ) 15 W d ( n 1 ) + 17 W d ( n 2 ) + 334 W d ( n 3 ) + 318 W d ( n 4 ) 2370 W d ( n 5 ) + 1889 W d ( n 6 ) + 449 W d ( n 7 ) + 225 W d ( n 8 ) = [ x 7 n ] H n ( x ) 15 x 7 H n 1 ( x ) + 17 x 14 H n 2 ( x ) + 334 x 21 H n 3 ( x ) + 318 x 28 H n 4 ( x ) 2370 x 35 H n 5 ( x ) + 1889 x 42 H n 6 ( x ) + 449 x 49 H n 7 ( x ) + 225 x 56 H n 8 ( x ) .
The above equality can be simplified, by factorization, into
Δ d ( n ) : = [ x 7 n ] H ( x ) ,
where H ( x ) is given explicitly by
H ( x ) : = ( 1 + x ) n 7 ( 1 + x 2 ) 2 n 14 { 1 + 8 x + 40 x 2 + 152 x 3 + 470 x 4 + 1240 x 5 + 2860 x 6 + 5850 x 7 + 10729 x 8 + 17723 x 9 + 26385 x 10 + 35286 x 11 + 41870 x 12 + 42904 x 13 + 35419 x 14 + 17809 x 15 8927 x 16 40984 x 17 72604 x 18 97318 x 19 110163 x 20 108819 x 21 93717 x 22 67878 x 23 35464 x 24 1374 x 25 + 29941 x 26 + 54453 x 27 + 69103 x 28 + 74078 x 29 + 69970 x 30 + 59668 x 31 + 47574 x 32 + 34003 x 33 + 21105 x 34 + 10076 x 35 526 x 36 7396 x 37 9943 x 38 9449 x 39 5444 x 40 1407 x 41 + 748 x 42 + 1596 x 43 + 864 x 44 + 69 x 45 42 x 46 + 25 x 47 + 75 x 48 } .
When n 8 , this becomes a polynomial of degree 13 + 5 n < 7 n , which proves the recurrence relation Δ d ( n ) = 0 as in Proposition 4.

5.3. Proof of Theorem 4

Finally, for the generating function
H ( y ) : = n = 0 W d ( n ) y n = W d ( 0 ) + W d ( 1 ) y + W d ( 2 ) y 2 + W d ( 3 ) y 3 + W d ( 4 ) y 4 + W d ( 5 ) y 5 + W d ( 6 ) y 6 + W d ( 7 ) y 7 + n = 8 W d ( n ) y n ,
first replacing W d ( n ) by the recurrence relation in Proposition 4 and then invoking the initial values
{ W d ( n ) } n = 0 7 = 1 , 9 , 64 , 657 , 5737 , 52544 , 469953 , 4165193 ,
we establish the following functional equation
H ( y ) = 1 6 y 54 y 2 + 184 y 3 + 294 y 4 474 y 5 329 y 6 + H ( y ) 15 y 17 y 2 334 y 3 318 y 4 + 2370 y 5 1889 y 6 449 y 7 225 y 8 ,
which confirms the generating function as in Theorem 4
H ( y ) = 1 6 y 54 y 2 + 184 y 3 + 294 y 4 474 y 5 329 y 6 1 15 y + 17 y 2 + 334 y 3 + 318 y 4 2370 y 5 + 1889 y 6 + 449 y 7 + 225 y 8 .
As anticipated in the introduction, the double sum Φ c ( n ) satisfies the following recurrence relation
Δ : = Φ c ( n ) 3 Φ c ( n 1 ) 3 Φ c ( n 2 ) 4 Φ c ( n 3 ) = 0 for n 3 .
A proof of this is offered as follows. By applying the expression for W d i ( n ) in the proof of Lemma 4, we can write
i = 0 n ( 1 ) i n + i + 1 2 j + 1 n + j + 1 2 i + 1 = [ x 3 n ] ( 1 ) n x 3 j ( 1 + x ) n + j + 1 ( 1 + x 2 ) 2 j + 2 .
Then the double sum Φ c ( n ) can compactly be expressed as
Φ c ( n ) = [ x 3 n ] j = 0 n ( 1 ) n + j x 3 j ( 1 + x ) n + j + 1 ( 1 + x 2 ) 2 j + 2 = [ x 3 n ] ( 1 ) n ( 1 + x ) n + 1 ( 1 + x 2 ) 2 j = 0 ( 1 ) j x 3 j ( 1 + x ) j ( 1 + x 2 ) 2 j = [ x 3 n ] R n ( x ) , where R n ( x ) = ( 1 ) n ( 1 + x ) n + 1 1 + 2 x 2 + x 3 + 2 x 4 .
Now reformulating the difference
Δ = Φ c ( n ) 3 Φ c ( n 1 ) 3 Φ c ( n 2 ) 4 Φ c ( n 3 ) = [ x 3 n ] R n ( x ) 3 x 3 R n 1 ( x ) 3 x 6 R n 2 ( x ) 4 x 9 R n 3 ( x ) = [ x 3 n ] ( 1 ) n ( 1 + x ) n 2 1 + 2 x 2 + x 3 + 2 x 4 ( 1 + x ) 3 + 3 x 3 ( 1 + x ) 2 3 x 6 ( 1 + x ) + 4 x 9 = [ x 3 n ] ( 1 ) n ( 1 + x ) n 2 ( 1 + 2 x ) ( 1 + x x 2 x 3 + x 4 ) ,
we infer that the difference Δ vanishes when n > 2 since the polynomial displayed in the last line is of degree n + 3 < 3 n . In addition, it is routine to determine the generating function
n = 0 Φ c ( n ) y n = 1 + 2 y 1 3 y 3 y 2 4 y 3 .

6. Conclusions

The results for triple binomial sums presented in this paper suggest that one may make further investigations about quadruple and quintuple sums. However, numerical tests show that the corresponding recurrence relations and generating functions are very complicated in spite of their existence. Another problem concerns multiple circular sums analogous to those treated by Carlitz [25] and the second author [26]. It would be tough to determine the general pattern for the related recurrence relations and generating functions. Finally, the results obtained in this paper may potentially find applications in conjunction with Fibonacci and Lucas numbers as conducted in [10,23]. The interested reader is encouraged to further explore these areas.

Author Contributions

Writing—original draft, W.C.; Writing—review & editing, M.N.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are grateful to anonymous referees for the careful reading, critical comments and valuable suggestions that contributed significantly to improving the manuscript during the revision.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Comtet, L. Advanced Combinatorics; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1974. [Google Scholar]
  2. Gould, H.W. Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations; Morgantown Printing: Morgantown, WV, USA, 1972. [Google Scholar]
  3. Riordan, J. Combinatorial Identities; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
  4. Bai, M.; Chu, W. Seven equivalent binomial sums. Discret. Math. 2020, 343, 111691. [Google Scholar] [CrossRef]
  5. Chu, W. Some binomial convolution formulas. Fibonacci Quart. 2002, 40, 19–32. [Google Scholar]
  6. Chu, W. Finite differences and Dixon–like binomial sums. Integral Transform. Spec. Funct. 2012, 23, 251–261. [Google Scholar] [CrossRef]
  7. Chu, W. Moments on quadratic binomial products. J. Number Theory 2017, 178, 19–30. [Google Scholar] [CrossRef]
  8. Chu, W. Reduction formula of a double binomial sum. Turk. J. Math. 2018, 42, 307–311. [Google Scholar] [CrossRef]
  9. Carlitz, L. Multiple sums and generating functions. Collect. Math. 1965, 17, 281–296. [Google Scholar]
  10. Kilic, E.; Arikan, T. Double binomial sums and double sums related with certain linear recurrences of various order. Chiang Mai J. Sci. 2018, 45, 1569–1577. Available online: http://epg.science.cmu.ac.th/ejournal/ (accessed on 25 May 2022).
  11. Li, N.N.; Chu, W. Multifold convolutions of binomial coefficietns. Math. Commun. 2019, 42, 277–285. [Google Scholar]
  12. Spivey, M.Z. The Art of Proving Binomial Identities; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA; Taylor & Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2019. [Google Scholar]
  13. Egorychev, G.P. Integral Representations and the Computation of Combinatorial Sums; “Nauka” Sibirsk, Otdel., Novosibirsk, 1977; Translations of Mathematical Monographs 59; American Mathematical Society: Providence, RI, USA, 1984. [Google Scholar]
  14. Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics; Addison–Wesley Publishing Company: Reading, MA, USA, 1989. [Google Scholar]
  15. Petkovsek, M.; Wilf, H.S.; Zielberger, D. A=B; AK Peters Ltd.: Wellesly, MA, USA, 1996. [Google Scholar]
  16. Aigner, M. A Course in Enumeration; Springer: New York, NY, USA, 2007. [Google Scholar]
  17. Goulden, I.P.; Jackson, D.M. Combinatorial Enumeration; Dover Publications Inc.: Mineola, NY, USA, 2017. [Google Scholar]
  18. Stanley, R.P. Enumerative Combinatorics, Volume 1; Cambridge University Press: Cambridge, MA, USA, 1997. [Google Scholar]
  19. Stanley, R.P. Enumerative Combinatorics, Volume 2; Cambridge University Press: Cambridge, MA, USA, 1999. [Google Scholar]
  20. Batir, N.; Kucuk, H.; Sorgun, S. Convolution identities involving the central binomial coefficients and Catalan numbers. Trans. Comb. 2021, 10, 225–238. [Google Scholar]
  21. Shattuck, M. Combinatorial proofs of some Stirling number convolution formulas. J. Integer Seq. 2022, 25, 3. [Google Scholar]
  22. Spivey, M.Z. A combinatorial proof for the alternating convolution of the central binomial coefficients. Am. Math. Mon. 2014, 121, 537–540. [Google Scholar] [CrossRef] [Green Version]
  23. Kilic, E.; Prodinger, H. Some double binomial sums related with the Fibonacci, Pell and generalized order-k Fibonacci numbers. Rocky Mt. J. Math. 2013, 43, 975–987. [Google Scholar] [CrossRef]
  24. Koshy, T. Fibonacci and Lucas Numbers with Applications; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
  25. Carlitz, L. The characteristic polynomial of a certain matrix of binomial coefficients. Fibonacci Quart. 1965, 3, 81–89. [Google Scholar]
  26. Chu, W. Circular sums of binomial coefficients. Rev. R. Acad. Cienc. Exactas Fis. Nat. (Esp.) 2021, 115, 92. [Google Scholar] [CrossRef]
  27. Wilf, H.S. Generatingfunctionology, 2nd ed.; Academic Press Inc.: London, UK, 1994. [Google Scholar]
  28. Knuth, D.E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3rd ed.; §1.2.9 Generating Functions; Addison–Wesley: Reading, MA, USA, 1997. [Google Scholar]
  29. Shapiro, L.; Sprugnoli, R.; Barry, P.; Cheon, G.S.; He, T.X.; Merlini, D.; Wang, W.P. Chapter 2. Extraction of Coefficients and Generating Functions. In The Riordan Group and Applications; Springer: Cham, Switzerland, 2022; pp. 19–46. [Google Scholar]
  30. Stenlund, H. A note on the exponential polynomial and its generating function. J. Res. Appl. Math. 2022, 8, 28–30. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Chen, M.N.; Chu, W. Generating Functions for Four Classes of Triple Binomial Sums. Mathematics 2022, 10, 4025. https://doi.org/10.3390/math10214025

AMA Style

Chen MN, Chu W. Generating Functions for Four Classes of Triple Binomial Sums. Mathematics. 2022; 10(21):4025. https://doi.org/10.3390/math10214025

Chicago/Turabian Style

Chen, Marta Na, and Wenchang Chu. 2022. "Generating Functions for Four Classes of Triple Binomial Sums" Mathematics 10, no. 21: 4025. https://doi.org/10.3390/math10214025

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop