Nonlinear Contagion and Causality Nexus between Oil, Gold, VIX Investor Sentiment, Exchange Rate and Stock Market Returns: The MS-GARCH Copula Causality Method
Abstract
:1. Introduction
2. Literature Review
2.1. Oil and Stock Return
2.2. VIX and Oil Price
2.3. VIX and Stock Return
3. Data and Methodology
3.1. Data
3.2. Methodology
4. Analysis and Results
- Getting the coefficients of the variables and the number of regimes, in each one of the regimes, determining the regime durations and transition probabilities, and then finding the contagion by the MS-GARCH copula causality method.
- Determining the evidence of copula and the direction of causality by MS-GARCH copula causality method.
- Comparing the results obtained by the MS-GARCH copula causality method for return variables with the ones of GARCH copula causality method.
4.1. MS-GARCH Copula Results
4.2. MS-GARCH Copula Causality Test Results
5. Discussion, Implications, and Policy Suggestions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mensi, W.; Hammoudeh, S.; Shahzad, S.J.H.; Shahbaz, M. Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method. J. Bank. Financ. 2017, 75, 258–279. [Google Scholar] [CrossRef]
- Baur, D.G.; Lucey, B.M. Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold. Financ. Rev. 2017, 45, 217–229. [Google Scholar] [CrossRef]
- Baur, D.G.; McDermott, T.K. Is gold a safe haven? International evidence. J. Bank. Financ. 2010, 34, 1886–1898. [Google Scholar] [CrossRef]
- Reboredo, J.C. Is gold a hedge or safe haven against oil price movements? Resour. Policy 2013, 38, 130–137. [Google Scholar] [CrossRef]
- Mensia, W.; Hammoudeh, S.; Tiwarid, A.K.; Al-Yahyaee, K.H. Is there a relationship between MENA stock markets, oil, bitcoin, gold, and VIX? A wavelet based dependence-switching copula approach. Econ. Res. Forum 2019, 1–59. Available online: https://erf.org.eg/wp-content/uploads/2019/03/11-89-Walid-Mensi-Shawkat-Hammoudeh.pdf (accessed on 30 August 2022).
- Connolly, C.T.; Stivers, L.; Sun, L. Stock market uncertainty and the stock-bond return relation. J. Financ. Quant. Anal. 2005, 40, 161–194. [Google Scholar] [CrossRef] [Green Version]
- Chiang, T.C.; Li, J.; Yang, S.-Y. Dynamic stock–bond return correlations and financial market uncertainty. Rev. Quant. Financ. Acc. 2014, 45, 59–88. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Lahiani, A.; Bellalah, M. Oil Price Shocks and Stock Market Returns in Oil-Exporting Countries: The Case of GCC Countries. Int. J. Econ. Financ. 2010, 2, 132–139. [Google Scholar] [CrossRef]
- Basher, S.A.; Haug, A.A.; Sadorsky, P. Oil prices, exchange rates and emerging stock markets. Energy Econ. 2012, 34, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Boyer, M.M.; Filion, D. Common and fundamental factors in stock returns of Canadian oil and gas companies. Energy Econ. 2007, 29, 428–453. [Google Scholar] [CrossRef] [Green Version]
- Hammoudeh, S.; Dibooglu, S.; Aleisa, E. Relationships among U.S. oil prices and oil industry equity indices. Int. Rev. Econ. Financ. 2004, 13, 427–453. [Google Scholar] [CrossRef]
- Huang, R.D.; Masulis, R.W.; Stoll, H.R. Energy shocks and financial markets. J. Futures Mark. 1996, 16, 1–27. [Google Scholar] [CrossRef]
- Faff, R.; Brailsford, T. Oil price risk and the Australian stock market. J. Ener. Financ. Dev. 1999, 4, 69–87. [Google Scholar] [CrossRef]
- Lee, T.H.; Luong, A.T. Dynamic spillovers between oil price, stock market, and investor sentiment: Evidence from the United States and Vietnam. Resour. Policy 2022, 78, 102931. [Google Scholar] [CrossRef]
- Rahman, S. The asymmetric effects of oil price shocks on the U.S. stock market. Energy Econ. 2022, 105, 105694. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, M.; Yue, W. The impact of oil price shocks on the risk-return relation in the Chinese stock market. Financ. Res. Lett. 2022, 47, 102788. [Google Scholar] [CrossRef]
- Maghyereh, A.; Abdoh, H. Extreme dependence between structural oil shocks and stock markets in GCC countries. Resour. Pol. 2022, 76, 102626. [Google Scholar] [CrossRef]
- Sadorsky, P. Risk factors in stock returns of Canadian oil and gas companies. Energy Econ. 2001, 23, 17–28. [Google Scholar] [CrossRef]
- Hamilton, J.D. This is what happened to the oil price-macroeconomy relationship. J. Monet. Econ. 1996, 38, 215–220. [Google Scholar] [CrossRef]
- Chan-Lau, J.A.; Mathieson, D.J.; Yao, J.Y. Extreme contagion in equity markets. IMF Staff. Pap. 2004, 51, 386–408. [Google Scholar] [CrossRef]
- Forbes, K.; Rigobon, R. Measuring contagion: Conceptual and empirical issues. In International Financial Contagion, 1st ed.; Claessens, S., Forbes, K., Eds.; Springer: Boston, MA, USA, 2001; Chapter 1; pp. 43–66. [Google Scholar]
- Boubaker, H.; Sghaier, N. Instability and dependence structure between oil prices and GCC stock markets. Energy Stud. Rev. 2014, 20, 50–65. [Google Scholar] [CrossRef]
- Boubaker, H.; Sghaier, N. Contagion effect and change in the dependence between oil and ten MENA stock markets. J. Stat. Math. Sci. 2016, 2, 1–17. [Google Scholar]
- Bildirici, M. The chaotic behavior among the oil prices, expectation of investors and stock returns: TAR-TR-GARCH copula and TAR-TR-TGARCH copula. Pet. Sci. 2019, 16, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Bildirici, M.E. Chaos structure and contagion behavior between COVID-19, and the returns of prices of precious metals and oil: MS-GARCH-MLP copula. Nonlinear Dyn. Psychol. Life Sci. 2022, 26, 209–230. [Google Scholar]
- Reboredo, J.; Ugolini, A. Quantile dependence of oil price movements and stock returns. Energy Econ. 2016, 54, 33–49. [Google Scholar] [CrossRef]
- Jiang, M.; An, H.; Jia, X.; Sun, X. The influence of global benchmark oil prices on the regional oil spot market in multi-period evolution. Energy 2017, 118, 742–752. [Google Scholar] [CrossRef]
- Lee, T.H.; Yang, W. Granger-causality in quantiles between financial markets: Using copula approach. Int. Rev. Financ. Anal. 2017, 33, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Liang, H. A copula approach to assessing Granger causality. Neuro Image 2014, 100, 125–134. [Google Scholar] [CrossRef]
- Pindyck, R.S.; Rotemberg, J.J. The excess co-movement of commodity prices. Econ. J. 1990, 100, 1173–1189. [Google Scholar] [CrossRef]
- Leybourne, S.Y.; Lloyd, T.A.; Reed, G.V. The excess comovement of commodity prices revisited. World Dev. 1994, 22, 1747–1758. [Google Scholar] [CrossRef]
- Cong, R.G.; Wei, Y.M.; Jiao, J.L.; Fan, Y. Relationships between oil price shocks and stock market: An empirical analysis from China. Energy Policy 2008, 36, 3544–3553. [Google Scholar] [CrossRef]
- Broadstock, D.C.; Cao, H.; Zhang, D. Oil shocks and their impact on energy related stocks in China. Energy Econ. 2012, 34, 1888–1895. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.R.; You, S.Y. The impact of oil price shocks on the large emerging countries’ stock prices: Evidence from China, India and Russia. Int. Rev. Econ. Financ. 2014, 29, 330–338. [Google Scholar] [CrossRef]
- Chen, Q.; Lv, X. The extreme-value dependence between the crude oil price and Chinese stock markets. Int. Rev. Econ. Financ. 2015, 39, 121–132. [Google Scholar] [CrossRef]
- Zhang, C.G.; Chen, X.Q. The impact of global oil price shocks on China’s stock returns: Evidence from the ARJI (-ht)-EGARCH model. Energy 2011, 36, 6627–6633. [Google Scholar] [CrossRef]
- Caporale, G.M.; Ali, F.M.; Spagnolo, N. Oil price uncertainty and sectoral stock returns in China: A time-varying approach. China Econ. Rev. 2015, 34, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Chiou, C.S.; Lee, Y.H. Jump dynamics and volatility: Oil and the stock markets. Energy 2009, 34, 788–796. [Google Scholar] [CrossRef]
- Miller, I.; Ratti, R.A. Crude oil and stock markets: Stability, instability, and bubbles. Energy Econ. 2009, 31, 559–568. [Google Scholar] [CrossRef] [Green Version]
- Nandha, M.; Faff, R. Does oil move equity prices? A global view. Energy Econ. 2008, 30, 986–997. [Google Scholar] [CrossRef]
- Park, J.; Ratti, R.A. Oil price shocks and stock markets in the US and 13 European countries. Energy Econ. 2008, 30, 2587–2608. [Google Scholar] [CrossRef]
- Arouri, M.E.H.; Nguyen, D.K. Oil prices, stock markets and portfolio investment: Evidence from sector analysis in Europe over the last decade. Energy Policy 2010, 38, 4528–4539. [Google Scholar] [CrossRef] [Green Version]
- Fayyad, A.; Daly, K. The impact of oil price shocks on stock market returns: Comparing GCC countries with the UK and USA. Emerg. Mark. Rev. 2011, 12, 61–78. [Google Scholar] [CrossRef]
- Bjornland, H.C. Oil price shocks and stock market booms in an oil exporting country. Scott. J. Politi. Econ. 2009, 56, 232–254. [Google Scholar] [CrossRef]
- Jimenez-Rodriguez, R.; Sanchez, M. Oil price shocks and real GDP growth: Empirical evidence for some OECD countries. Appl. Econ. 2005, 37, 201–228. [Google Scholar] [CrossRef]
- Bouri, E.; Demirer, R. On the volatility transmission between oil and stock markets: A comparison of emerging importers and exporters. Econ. Politica 2016, 33, 63–82. [Google Scholar] [CrossRef]
- Ji, Q.; Liu, B.Y.; Zhao, W.L.; Fan, Y. Modelling dynamic dependence and risk spillover between all oil price shocks and stock market returns in the BRICS. Int. Rev. Financial Anal. 2020, 68, 101238. [Google Scholar] [CrossRef]
- Zhou, Z.; Jiang, Y.; Liu, Y.; Lin, L.; Liu, Q. Does international oil volatility have directional predictability for stock returns? evidence from BRICS countries based on cross-quantilogram analysis. Econ. Model. 2018, 80, 352–382. [Google Scholar] [CrossRef]
- Nasir, M.; Naidoo, L.; Shahbaz, M.; Amoo, N. Implications of oil prices shocks for the major emerging economies: A comparative analysis of BRICS. Energy Econ. 2018, 76, 76–88. [Google Scholar] [CrossRef]
- Ferreira, P.; Dionisio, A.; Movahed, S.M.S. Assessment of 48 stock markets using adaptive multifractal approach. Phys. A: Stat. Mech. Its Appl. 2017, 486, 730–750. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.; Ferreira, P.; Silva, M.F.; Miranda, J.; Pereira, H. Multiscale network for 20 stock markets using DCCA. Phys. A: Stat. Mech. Its Appl. 2019, 529, 121542. [Google Scholar] [CrossRef]
- Mohti, W.; Dionísio, A.; Vieira, I.; Ferreira, P. Financial contagion analysis in frontier markets: Evidence from the US subprime and the Eurozone debt crises. Phys. A: Stat. Mech. Its Appl. 2019, 525, 1388–1398. [Google Scholar] [CrossRef]
- Tursoy, T.; Faisal, F. The impact of gold and crude oil prices on stock market in Turkey: Empirical evidences from ARDL bounds test and combined cointegration. Resour. Policy 2018, 55, 49–54. [Google Scholar] [CrossRef]
- Brown, G.W.; Cliff, M.T. Investor sentiment and asset valuation. J. Bus. 2005, 78, 405–440. [Google Scholar] [CrossRef]
- Lemmon, M.; Portniaguina, E. Consumer confidence and asset prices: Some empirical evidence. Rev. Financ. Stud. 2006, 19, 1499–1529. [Google Scholar] [CrossRef]
- Beckman, J.; Belke, A.; Kühl, M. Global integration of central and eastern european financial markets: The role of economic sentiments. Rev. Int. Econ. 2011, 19, 137–157. [Google Scholar] [CrossRef] [Green Version]
- Zouaoui, M. How does investor sentiment affect stock market crises? Evidence from panel data. Financial Rev. 2011, 46, 723–747. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Liu, Z.; Zhang, Y.; Long, R. The contagion effect of international crude oil price fluctuations on Chinese stock market investor sentiment. Appl. Energy 2017, 187, 27–36. [Google Scholar] [CrossRef]
- Qadan, M.; Nama, H. Investor sentiments and the price of oil. Energy Econ. 2017, 69, 42–58. [Google Scholar] [CrossRef]
- Bildirici, M.; Badur, M. The effects of oil prices on confidence and stock return in China, India and Russia. Quant. Finance Econ. 2018, 2, 884–903. [Google Scholar] [CrossRef]
- Bildirici, M.; Badur, M. The effects of oil and gasoline prices on confidence and stock return of the energy companies for Turkey and the US. Energy 2019, 173, 1234–1241. [Google Scholar] [CrossRef]
- Copeland, M.; Copeland, T. VIX versus size. J. Portf. Manag. 2016, 42, 76–83. [Google Scholar] [CrossRef]
- Giot, P. Relationships between implied volatility indexes and stock index returns. J. Portf. Manag. 2005, 31, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Arak, M.; Mijid, N. The VIX and VXN volatility measures: Fear gauges or forecasts? Deriv. Use Trading Regul. 2006, 12, 14–27. [Google Scholar] [CrossRef]
- Whaley, R.E. Understanding VIX. J. Portf. Manag. 2009, 35, 98–105. [Google Scholar] [CrossRef]
- Chang, Y.; Choi, Y.; Park, J. Regime switching model with endogenous autoregressive latent factor. Indiana University. 2015. Available online: https://economics.yale.edu/sites/default/files/rsalf-2014-3-15.pdf (accessed on 21 August 2022).
- Guo, W.; Wohar, M.A. Identifying regime changes in market volatility. J. Financ. Res. 2006, 29, 79–93. [Google Scholar] [CrossRef]
- Durand, B.; Lim, D.; Zumwalt, J.K. Fear and the Fama-French factors. Financ. Manag. 2011, 40, 409–426. [Google Scholar] [CrossRef]
- Shaikh, I.; Padhi, P. The implied volatility index: Is ‘investor fear gauge’ or ‘forward-looking’? Borsa Istanb. Rev. 2015, 15, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Bildirici, M.; Ersin, Ö.; Şahin-Onat, I. Examination of the predictability of BDI and VIX: A threshold approach. Int. J. Transp. Econ. 2019, XLVI, 9–28. [Google Scholar]
- Liu, Z.; Liu, J.; Zeng, Q. VIX and stock market volatility predictability: A new approach. Financ. Res. Lett. 2022, 48, 102887. [Google Scholar] [CrossRef]
- Dutta, A. Forecasting realized volatility: New evidence from time-varying jumps in VIX. J. Futures Mark. 2022, 42, 1–25. [Google Scholar] [CrossRef]
- Shahzad, S.; Bouri, E.; Rehman, M.; Roubaud, D. The hedge asset for BRICS stock markets: Bitcoin, gold or VIX. World Econ. 2022, 45, 292–316. [Google Scholar] [CrossRef]
- Abakah, E.; Tiwari, A.; Alagidede, I.; Gil-Alana, L. Re-examination of risk-return dynamics in international equity markets and the role of policy uncertainty, geopolitical risk and VIX: Evidence using Markov-switching copulas. Financ. Res. Lett. 2022, 47, 102535. [Google Scholar] [CrossRef]
- Bildirici, M.; Ersin, Ö. Modeling Markov switching ARMA-GARCH neural networks models and an application to forecasting stock returns. Sci. World J. 2014, 2014, 497941. [Google Scholar] [CrossRef] [PubMed]
- Francq, C.; Zakoian, J.M. The l2-structures of standard and switching-regime GARCH models. Stoch. Process. Appl. 2005, 115, 1557–1582. [Google Scholar] [CrossRef]
- Henneke, S.; Rachev, S.; Fabozzi, F.; Nikolov, M. MCMC-based estimation of Markov switching ARMA-GARCH models. Appl. Econ. 2011, 43, 259–271. [Google Scholar] [CrossRef]
- Bildirici, M.; Sonustun, B. Chaotic behavior in gold, silver, copper and bitcoin prices. Resour. Policy 2021, 74, 102386. [Google Scholar] [CrossRef]
- Kim, C.-J. Dynamic linear models with Markov-switching. J. Econ. 1994, 60, 1–22. [Google Scholar] [CrossRef]
- Zhu, K.; Yamaka, W.; Sriboonchitta, S. Multi-asset portfolio returns: A Markov switching copula-based approach. Thai J. Math. 2016, 183–200. [Google Scholar]
- Kim, J.M.; Lee, N.; Hwang, S.Y. A copula nonlinear Granger causality. Econ. Model. 2020, 88, 420–430. [Google Scholar] [CrossRef]
- Kim, J.-M.; Hwang, S. Directional dependence via Gaussian copula beta regression model with asymmetric GARCH marginals. Commun. Stat. Simul. Comput. 2017, 46, 7639–7653. [Google Scholar] [CrossRef]
- Kim, J.-M.; Baik, J.; Reller, M. Control charts of mean and variance using copula Markov SPC and conditional distribution by copula. Commun. Stat. Simul. Comput. 2019, 50, 85–102. [Google Scholar] [CrossRef]
- Nalatore, H.; Sasikumar, N.; Rangarajan, G. Effect of measurement noise on Granger causality. Phys. Rev. 2014, 90, 062127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Thai Hung, N. Stock market volatility and exchange rate movements in the Gulf Arab countries: A Markov-state switching model. J. Islam. Account. Bus. Res. 2020, 11, 1969–1987. [Google Scholar] [CrossRef]
- Bildirici, M.; Ersin, Ö. Forecasting oil prices: Smooth transition and neural network augmented GARCH family models. J. Petroleum. Sci. Eng. 2013, 109, 230–240. [Google Scholar] [CrossRef]
- Bildirici, M.; Ersin, Ö. Forecasting volatility in oil prices with a class of nonlinear volatility models: Smooth transition RBF and MLP neural networks augmented GARCH approach. Pet. Sci. 2015, 12, 534–552. [Google Scholar] [CrossRef]
GOLD | OIL | BIST | VIX | EX | |
---|---|---|---|---|---|
Definition, Source: | Gold price, per ounce, Yahoo Finance | Brent future oil price, Yahoo Finance | Istanbul BIST100 index, EVDS | CBOE Vix index, Investing.com | TL/Dollar exchange rate, EVDS |
Mean | 0.041 | −0.023 | 0.039 | −0.031 | 0.029 |
Std.Dev. | 2.451 | 2.549 | 3.964 | 6.098 | 2.617 |
Kurtosis: | 18.140 | 21.357 | 31.201 | 5.469 | 4.937 |
Jarque-Bera | 789.125 | 956.805 | 2460.910 | 488.648 | 397.065 |
Dimension | GOLD | OIL | BIST | VIX | EX |
---|---|---|---|---|---|
2 | 247.616 | 271.614 | 244.359 | 187.712 | 165.193 |
3 | 267.239 | 292.337 | 245.535 | 202.078 | 177.109 |
4 | 291.584 | 317.792 | 248.054 | 218.271 | 191.882 |
5 | 326.309 | 354.030 | 255.789 | 240.818 | 213.144 |
6 | 373.546 | 403.192 | 267.294 | 271.197 | 242.118 |
GOLD | OIL | BIST | VIX | EX | |
---|---|---|---|---|---|
ARCH-LM: | 42.283 | 36.971 | 29.440 | 38.262 | 20.534 |
Decision: | ARCH effects cannot be rejected for all variables | ||||
ADF: | −10.262 | −8.261 | −67.294 | −5.673 | −14.780 |
Decision: | All variables are I(0) stationary processes 1 |
Student-t | Gumble | Clayton | |
---|---|---|---|
Acceptance: | 0.471 | 0.392 | 0.440 |
DIC: | −1926.331 | −2584.214 | −2105.104 |
Coefficient: | ARCH | GARCH | Cons. | p(st|st−1) | Diagnostics: | |
---|---|---|---|---|---|---|
Dependent Variable: BIST | ||||||
Regime 1: | 0.198 *1 | 0.721 ** | 0.018 *** | p(1|1): | LogL: 2546.12 | |
(1.82) | (2.49) | (2.88) | 0.64 *** | |||
Regime 2: | 0.19 ** | 0.614 ** | 0.011 * | p(2|2): | RMSE: | ARCHLM: 0.33 [0.51] |
(2.44) | (1.97) | (1.92) | 0.76 *** | 0.11 | ||
Dependent Variable: GOLD | ||||||
Regime 1: | 0.104 ** | 0.808 ** | 0.01 ** | p(1|1): | LogL: 1965.23 | |
(2.38) | (2.02) | (2.12) | 0.63 *** | |||
Regime 2: | 0.0224 *** | 0.9467 *** | 0.015 *** | p(2|2): | RMSE: | ARCHLM: 0.28 [0.30] |
(2.93) | (2.87) | (3.40) | 0.72 *** | 0.27 | ||
Dependent Variable: VIX | ||||||
Regime 1: | 0.142 ** | 0.761 ** | 0.027 * | p(1|1): | LogL: 9768.42 | |
(2.33) | (2.19) | (1.82) | 0.61 *** | |||
Regime 2: | 0.0166 ** | 0.83 ** | 0.01 ** | p(2|2): | RMSE: | ARCHLM: 0.36 [0.45] |
(2.33) | (2.60) | (2.46) | 0.74 *** | 0.233 | ||
Dependent Variable: OIL | ||||||
Regime 1: | 0.116 *** | 0.712 *** | 0.11 ** | p(1|1): | LogL: 46587.4 | |
(3.87) | (2.58) | (2.48) | 0.66 *** | |||
Regime 2: | 0.067 ** | 0.728 *** | 0.03 *** | p(2|2): | RMSE: | ARCHLM: 0.32 [0.46] |
(2.26) | (3.24) | (3.55) | 0.77 *** | 0.31 | ||
Dependent Variable: EX | ||||||
Regime 1: | 0.39 *** | 0.505 ** | 0.137 * | p(1|1): | LogL: 37,659.7 | |
(3.24) | (1.99) | (1.84) | 0.64 *** | |||
Regime 2: | 0.105 *** | 0.76 ** | 0.07 * | p(2|2): | RMSE: | ARCHLM: 0.26 [0.30] |
(3.16) | (2.31) | (1.81) | 0.78 *** | 0.38 | ||
Regime-dependent copula results, regime 1 | ||||||
OIL-GOLD | OIL-VIX | OIL-BIST | OIL-EX | GOLD-VIX | ||
0.484 *** | 0.533 *** | 0.0972 *** | 0.253 *** | 0.760 *** | ||
GOLD-BIST | GOLD-EX | VIX-EX | VIX-BIST | EX-BIST | ||
0.694 *** | 0.712 *** | 0.323 *** | 0.723 *** | 0.471 *** | ||
Regime-dependent copula results, regime 2 | ||||||
OIL-GOLD | OIL-VIX | OIL-BIST | OIL-EX | GOLD-VIX | ||
0.475 *** | 0.51 *** | 0.025 *** | 0.007 ** | 0.692 *** | ||
GOLD-BIST | GOLD-EX | VIX-EX | VIX-BIST | EX-BIST | ||
0.145 *** | 0.301 ** | 0.593 *** | 0.681 *** | 0.029 *** |
Causality: | Regime 1: | Direction: | Regime 2: | Direction: |
---|---|---|---|---|
VIX→GOLD 1 | 0.002 | Bidirectional | 0.025 | Bidirectional |
GOLD→VIX | 0.010 | 0.011 | ||
VIX→OIL | 0.961 | Unidirectional, | 0.922 | Unidirectional, |
OIL→VIX | 0.023 | OIL→VIX | 0.025 | OIL→VIX |
VIX→EX | 0.006 | Unidirectional, | 0.004 | Bidirectional |
EX→VIX | 0.798 | VIX→EX | 0.016 | |
VIX→BIST | 0.032 | Unidirectional, | 0.029 | Unidirectional, |
BIST→VIX | 0.662 | VIX→BIST | 0.774 | VIX→BIST |
GOLD→OIL | 0.745 | Unidirectional, | 0.026 | Bidirectional |
OIL→GOLD | 0.009 | OIL→GOLD | 0.003 | |
GOLD→EX | 0.011 | Unidirectional, | 0.004 | Unidirectional, |
EX→GOLD | 0.523 | GOLD→EX | 0.723 | GOLD→EX |
GOLD→BIST | 0.006 | Unidirectional, | 0.005 | Unidirectional, |
BIST→GOLD | 0.941 | GOLD→BIST | 0.796 | GOLD→BIST |
OIL→EX | 0.015 | Unidirectional, | 0.002 | Unidirectional, |
EX→OIL | 0.729 | OIL→EX | 0.861 | OIL→EX |
OIL→BIST | 0.019 | Unidirectional, | 0.014 | Unidirectional, |
BIST→OIL | 0.889 | OIL→BIST | 0.856 | OIL→BIST |
EX→BIST | 0.008 | Bidirectional | 0.013 | Unidirectional, |
BIST→EX | 0.016 | 0.780 | EX→BIST |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bildirici, M.E.; Salman, M.; Ersin, Ö.Ö. Nonlinear Contagion and Causality Nexus between Oil, Gold, VIX Investor Sentiment, Exchange Rate and Stock Market Returns: The MS-GARCH Copula Causality Method. Mathematics 2022, 10, 4035. https://doi.org/10.3390/math10214035
Bildirici ME, Salman M, Ersin ÖÖ. Nonlinear Contagion and Causality Nexus between Oil, Gold, VIX Investor Sentiment, Exchange Rate and Stock Market Returns: The MS-GARCH Copula Causality Method. Mathematics. 2022; 10(21):4035. https://doi.org/10.3390/math10214035
Chicago/Turabian StyleBildirici, Melike E., Memet Salman, and Özgür Ömer Ersin. 2022. "Nonlinear Contagion and Causality Nexus between Oil, Gold, VIX Investor Sentiment, Exchange Rate and Stock Market Returns: The MS-GARCH Copula Causality Method" Mathematics 10, no. 21: 4035. https://doi.org/10.3390/math10214035
APA StyleBildirici, M. E., Salman, M., & Ersin, Ö. Ö. (2022). Nonlinear Contagion and Causality Nexus between Oil, Gold, VIX Investor Sentiment, Exchange Rate and Stock Market Returns: The MS-GARCH Copula Causality Method. Mathematics, 10(21), 4035. https://doi.org/10.3390/math10214035