Progressive Fracture Behavior and Acoustic Emission Release of CJBs Affected by Joint Distance Ratio
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Combination of RFPA and DIC
2.2. Damage and Failure of One Meso-Element
2.3. Modeling Effectiveness
2.4. Numerical Investigation
3. Results
3.1. The Deforming and Bearing under Different Joint Distance Ratios
3.1.1. Under Plane Strain
3.1.2. The Cases of Two Kinds of Model Boundaries
3.2. Fracture Processes and Energy Evolutions under Different Joint Distance Ratios
3.2.1. Failure Modes under Different Column Dip Angles
3.2.2. Fracture Processes and Energy Evolutions under Different Column Dip Angles
- (1)
- For the CJBs with β = 30° and the joint distance ratio 0%
- (2)
- For the CJBs with β = 30° and the joint distance ratio 50%
- (3)
- For the CJBs with β = 75° and the joint distance ratio 50%
3.2.3. Fracture Processes and Energy Evolutions under Various Joint Distance Ratios and Column Dip Angle of 60°
- (1)
- When the joint distance ratio = 0%
- (2)
- When the joint distance ratio = 20%
- (3)
- When the joint distance ratio = 50%
- (4)
- When the joint distance ratio = 50%
3.3. The AE Counts and Energy Accumulations under Different Joint Distance Ratios
3.3.1. For the Case of Plane Strain
3.3.2. For the Case between Plane Stress and Plane Strain
3.3.3. The AE Energy Accumulations under Compression
- (1)
- For the case of plane strain
- (2)
- For the case of two kinds of model boundaries
4. Discussion
4.1. Influence of Joint Characteristics on CS and EDM
4.2. Influence of Joint Characteristics on Fracture Mechanism
4.3. Influence of Joint Characteristics on Acoustic Emission
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Symbol and Abbreviation
Symbol | |
σ | Stress |
fc0 | Uniaxial compressive strength |
ft0 | Uniaxial tensile strength |
fcr | Residual compressive strength |
ftr | Residual tensile strength |
ε | Strain |
εc0 | Strain at fc0 |
εt0 | Strain at ft0 |
εtu | Ultimate tensile strain |
Abbreviation | |
CJRM | Columnar jointed rock mass |
CJB | Columnar jointed basalt |
CS | Compressive strength |
EDM | Equivalent deformation modulus |
References
- Zheng, W.T.; Xu, W.Y.; Ning, Y.; Meng, G.T. Scale effect and anisotropy of deformation modulus of closely jointed basaltic mass. J. Eng. Geol. 2010, 18, 559–565. [Google Scholar]
- Jiang, Q.; Feng, X.T.; Hatzor, Y.H.; Hao, X.J.; Li, S.J. Mechanical anisotropy of columnar jointed basalts: An example from the Baihetan hydropower station, China. Eng. Geol. 2014, 175, 35–45. [Google Scholar] [CrossRef]
- Li, G.; Wang, K.; Gong, B.; Tao, Z.G.; Du, K. A multi-temporal series high-accuracy numerical manifold method for transient thermoelastic fracture problems. Int. J. Solids Struct. 2021, 230, 111151. [Google Scholar] [CrossRef]
- Jin, C.Y.; Li, S.G.; Liu, J.P. Anisotropic mechanical behaviors of columnar jointed basalt under compression. Bull. Eng. Geol. Environ. 2018, 77, 317–330. [Google Scholar] [CrossRef]
- Milazzo, M.P.; Keszthelyi, L.P.; Jaeger, W.L.; Rosiek, M.; Mattson, S.; Verba, C.; Beyer, R.A.; Geissler, P.E.; McEwen, A.S.; Hi, R.T. Discovery of columnar jointing on Mars. Geology 2009, 37, 171–174. [Google Scholar] [CrossRef] [Green Version]
- Goehring, L.; Mahadevan, L.; Morris, S.W. Nonequilibrium scale selection mechanism for columnar jointing. Proc. Natl. Acad. Sci. USA 2009, 106, 387–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q.X.; Wang, H.L.; Xu, W.Y.; Chen, Y.L. Numerical homogenization study on the effects of columnar jointed structure on the mechanical properties of rock mass. Int. J. Rock Mech. Min. Sci. 2019, 124, 104127. [Google Scholar] [CrossRef]
- Yan, L.; Xu, W.Y.; Wang, R.B.; Meng, Q.X. Numerical simulation of the anisotropic properties of a columnar jointed rock mass under triaxial compression. Eng. Comput. 2018, 35, 1788–1804. [Google Scholar] [CrossRef]
- Niu, Z.H.; Zhu, Z.D.; Que, X.C. Constitutive model of stress-dependent seepage in columnar jointed rock mass. Symmetry 2020, 12, 160. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.P.; Wang, H.L.; Xu, W.Y.; Xie, W.C. Experimental study on hydro-mechanical behaviour of anisotropic columnar jointed rock-like specimens. Rock Mech. Rock Eng. 2020, 53, 5781–5794. [Google Scholar] [CrossRef]
- Ke, Z.Q.; Wang, H.L.; Xu, W.Y.; Lin, Z.N.; Ji, H. Experimental study of mechanical behaviour of artificial columnar jointed rock mass containing transverse joints. Rock Soil Mech. 2019, 40, 660–667. [Google Scholar]
- Shi, A.C.; Wei, Y.F.; Zhang, Y.H.; Tang, M.F. Study on the strength characteristics of columnar jointed basalt with a true triaxial apparatus at the Baihetan hydropower station. Rock Mech. Rock Eng. 2020, 53, 4947–4965. [Google Scholar] [CrossRef]
- Ji, H.; Zhang, J.C.; Xu, W.Y.; Wang, R.B.; Wang, H.L.; Yan, L.; Lin, Z.N. Experimental investigation of the anisotropic mechanical properties of a columnar jointed rock mass: Observations from laboratory-based physical modelling. Rock Mech. Rock Eng. 2017, 50, 1919–1931. [Google Scholar] [CrossRef]
- Que, X.C.; Zhu, Z.D.; Niu, Z.H.; Lu, W.N. Estimating the strength and deformation of columnar jointed rock mass based on physical model test. Bull. Eng. Geol. Environ. 2020, 80, 1557–1570. [Google Scholar] [CrossRef]
- Feng, X.T.; Hao, X.J.; Jiang, Q.; Li, S.J.; Hudson, J.A. Rock cracking indices for improved tunnel support design: A case study for columnar jointed rock masses. Rock Mech. Rock Eng. 2016, 49, 2115–2130. [Google Scholar] [CrossRef]
- Hao, X.J.; Feng, X.T.; Yang, C.X.; Jiang, Q.; Li, S.J. Analysis of EDZ development of columnar jointed rock mass in the Baihetan diversion tunnel. Rock Mech. Rock Eng. 2016, 49, 1289–1312. [Google Scholar] [CrossRef]
- Chen, B.R.; Li, Q.P.; Feng, X.T.; Xiao, Y.X.; Feng, G.L.; Hu, L.X. Microseismic monitoring of columnar jointed basalt fracture activity: A trial at the Baihetan Hydropower Station, China. J. Seismol. 2014, 18, 773–793. [Google Scholar] [CrossRef]
- Xiao, Y.X.; Feng, X.T.; Chen, B.R.; Feng, G.L.; Yao, Z.B.; Hu, L.X. Excavation-induced microseismicity in the columnar jointed basalt of an underground hydropower station. Int. J. Rock Mech. Min. Sci. 2017, 97, 99–109. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, B.; Feng, X.T.; Fan, Q.X.; Wang, Z.L.; Pei, S.F.; Jiang, S. In situ failure investigation and time-dependent damage test for columnar jointed basalt at the Baihetan left dam foundation. Bull. Eng. Geol. Environ. 2019, 78, 3875–3890. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Gong, B.; Li, W. Instability analysis of a deep tunnel under triaxial loads using a three-dimensional numerical method with strength reduction method. Tunn. Undergr. Space Technol. 2019, 86, 51–62. [Google Scholar] [CrossRef]
- Gong, B.; Wang, Y.Y.; Zhao, T.; Tang, C.A.; Yang, X.Y.; Chen, T.T. AE energy evolution during CJB fracture affected by rock heterogeneity and column irregularity under lateral pressure. Geomat. Nat. Hazards Risk 2022, 13, 877–907. [Google Scholar] [CrossRef]
- Feng, X.H.; Gong, B.; Tang, C.A.; Zhao, T. Study on the non-linear deformation and failure characteristics of EPS concrete based on CT-scanned structure modelling and cloud computing. Eng. Fract. Mech. 2022, 261, 108214. [Google Scholar] [CrossRef]
- Liang, Z.Z.; Gong, B.; Wu, X.K.; Zhang, Y.B.; Tang, C.A. Influence of principal stresses on failure behavior of underground openings. Chin. J. Rock Mech. Eng. 2015, 34, 3176–3187. [Google Scholar]
- Gong, B.; Wang, S.Y.; Sloan, S.W.; Shen, D.C.; Tang, C.A. Modelling rock failure with a novel continuous to discontinuous method. Rock Mech. Rock Eng. 2019, 52, 3183–3195. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Gong, B.; Tang, C.A.; Zhao, T. Numerical study on size effect and anisotropy of columnar jointed basalts under uniaxial compression. Bull. Eng. Geol. Environ. 2022, 81, 41. [Google Scholar] [CrossRef]
- Chen, B.P.; Gong, B.; Wang, S.Y.; Tang, C.A. Research on zonal disintegration characteristics and failure mechanisms of deep tunnel in jointed rock mass with strength reduction method. Mathematics 2022, 10, 922. [Google Scholar] [CrossRef]
- Mazars, J.; Pijaudier-Cabot, G. Continuum damage theory-application to concrete. J. Eng. Mech. 1989, 115, 345–365. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Gong, B.; Tang, C.A. Numerical investigation on anisotropy and shape effect of mechanical properties of columnar jointed basalts containing transverse joints. Rock Mech. Rock Eng. 2022, 55, 7191–7222. [Google Scholar] [CrossRef]
- Bahaaddini, M.; Sharrock, G.; Hebblewhite, B.K. Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Comput. Geotech. 2013, 49, 206–225. [Google Scholar] [CrossRef]
- Nassir, M.; Settari, A.; Wan, R. Joint stiffness and deformation behaviour of discontinuous rock. J. Can. Pet. Technol. 2010, 49, 78–86. [Google Scholar] [CrossRef]
- Zheng, B.W.; Qi, S.W.; Huang, X.L.; Guo, S.F.; Wang, C.L.; Zhan, Z.F.; Luo, G.M. An advanced shear strength criterion for rock discontinuities considering size and low shear rate. Appl. Sci. 2020, 10, 4095. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, W.; Yan, Y.T.; Zhang, X. Scale effect of mechanical properties of jointed rock mass: A numerical study based on particle flow code. Geomech. Eng. 2020, 21, 259–268. [Google Scholar]
- Fan, X.; Kulatilake, P.; Chen, X. Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: A particle mechanics approach. Eng. Geol. 2015, 190, 17–32. [Google Scholar] [CrossRef]
- Wu, N.; Liang, Z.Z.; Li, Y.C.; Qian, X.K.; Gong, B. Effect of confining stress on representative elementary volume of jointed rock masses. Geomech. Eng. 2019, 18, 627–638. [Google Scholar]
- Zhou, J.X.; Zhou, Y.; Gao, Y.T. Effect mechanism of fractures on the mechanics characteristics of jointed rock mass under compression. Arab. J. Sci. Eng. 2018, 43, 3659–3671. [Google Scholar] [CrossRef]
- Chen, G.Q.; Sun, X.; Wang, J.C.; Wang, D.; Zhu, Z.F. Detection of cracking behaviors in granite with open precut cracks by acoustic emission frequency spectrum analysis. Arab. J. Geosci. 2020, 13, 258. [Google Scholar] [CrossRef]
- Meng, F.Z.; Wong, L.N.Y.; Zhou, H.; Wang, Z.Q.; Zhang, L.M. Asperity degradation characteristics of soft rock-like fractures under shearing based on acoustic emission monitoring. Eng. Geol. 2020, 266, 105392. [Google Scholar] [CrossRef]
- Guo, Q.F.; Pan, J.L.; Cai, M.F.; Zhang, Y. Investigating the effect of rock bridge on the stability of locked section slopes by the direct shear test and acoustic emission technique. Sensors 2020, 20, 638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.C.; Jiang, Y.J.; Asahina, D.; Wang, Z. Shear behavior and acoustic emission characteristics of en-echelon joints under constant normal stiffness conditions. Theor. Appl. Fract. Mech. 2020, 109, 102772. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.Z.; Jiang, Y.J.; Liu, P.X.; Guo, Y.S.; Liu, J.K.; Ma, M.; Wang, K.; Wang, S.G. Shear behaviour and acoustic emission characteristics of bolted rock joints with different roughnesses. Rock Mech. Rock Eng. 2018, 51, 1885–1906. [Google Scholar] [CrossRef]
Column Dip Angle (β) | 15° | 45° | 60° |
---|---|---|---|
Model |
Material Type | Heterogeneity Index | Elastic Modulus (GPa) | Uniaxial Compressive Strength (MPa) | Poisson’s Ratio | Friction Angle (°) |
---|---|---|---|---|---|
Basalt | 5 | 60 | 120 | 0.2 | 56.15 |
Joint | 5 | 15 | 30 | 0.25 | 36 |
Column Dip Angle (β) | 15° | 45° | 60° |
---|---|---|---|
Experiment [11] | |||
Simulation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Gong, B.; Zhang, Y.; Yang, X.; Tang, C. Progressive Fracture Behavior and Acoustic Emission Release of CJBs Affected by Joint Distance Ratio. Mathematics 2022, 10, 4149. https://doi.org/10.3390/math10214149
Wang Y, Gong B, Zhang Y, Yang X, Tang C. Progressive Fracture Behavior and Acoustic Emission Release of CJBs Affected by Joint Distance Ratio. Mathematics. 2022; 10(21):4149. https://doi.org/10.3390/math10214149
Chicago/Turabian StyleWang, Yongyi, Bin Gong, Yongjun Zhang, Xiaoyu Yang, and Chun’an Tang. 2022. "Progressive Fracture Behavior and Acoustic Emission Release of CJBs Affected by Joint Distance Ratio" Mathematics 10, no. 21: 4149. https://doi.org/10.3390/math10214149
APA StyleWang, Y., Gong, B., Zhang, Y., Yang, X., & Tang, C. (2022). Progressive Fracture Behavior and Acoustic Emission Release of CJBs Affected by Joint Distance Ratio. Mathematics, 10(21), 4149. https://doi.org/10.3390/math10214149