Wolbachia Invasion Dynamics by Integrodifference Equations
Abstract
:1. Introduction
- (1)
- If then the only steady state is globally asymptotically stable. Otherwise, it is unstable.
- (2)
- If then there exists a stable semi-trivial steady state . Moreover, if , then is globally asymptotically stable.
- (3)
- If , then there exists a semi-trivial steady state , and it is stable if . Moreover, if , then is globally asymptotically stable.
- (4)
- If and , then the coexistence steady state exists and is a saddle, and the case where both semi-trivial states are locally stable and coexistence state is unstable is called founder control.
2. Bifurcation of Non-Spatial Model
3. Spatial Model
3.1. Model
3.2. Analysis
- (i)
- If , then the only steady state is globally asymptotically stable. Otherwise, it is unstable.
- (ii)
- If , then there exists a stable semi-trivial steady state .
- (i)
- If , then the only steady state is globally asymptotically stable. Otherwise, it is unstable.
- (ii)
- If , then there exists a stable semi-trivial steady state . Moreover, if , then is globally asymptotically stable.
- (iii)
- If , then there exists a semi-trivial steady state , and it is stable if . Moreover, if , then is globally asymptotically stable.
- (iv)
- If and , then the coexistence steady state exists and is a saddle.
- (v)
- If and , then the system undergoes a transcritical bifurcation at .
3.3. Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calisher, C.H. Persistent emergence of dengue. Emerg. Infect. Dis. 2005, 11, 738–739. [Google Scholar] [CrossRef] [PubMed]
- Kyle, J.L.; Harris, E. Global spread and persistence of dengue. Ann. Rev. Microbiol. 2008, 62, 71–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laven, H. Cytoplasmic inheritance in Culex. Nature 1956, 177, 141–142. [Google Scholar] [CrossRef]
- Iturbe-Ormaetxe, I.; Walker, T.; O’Neill, S.L. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011, 12, 508–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caspari, E.; Watson, G.S. On the evolutionary importance of cytoplasmic sterility in mosquitoes. Evolution 1959, 13, 568–570. [Google Scholar] [CrossRef]
- Fine, P.E. On the dynamics of symbiote-dependent cytoplasmic incompatibility in Culicine mosquitoes. J. Invertebr. Pathol. 1978, 31, 10–18. [Google Scholar] [CrossRef]
- Yu, J. Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model. J. Differ. Equ. 2020, 269, 10395–10415. [Google Scholar] [CrossRef]
- Zheng, B.; Tang, M.; Yu, J. Modeling Wolbachia spread in mosquitoes through delay differential equations. SIAM J. Appl. Math. 2014, 74, 734–770. [Google Scholar] [CrossRef]
- Zheng, B.; Li, J.; Yu, J. Existence and stability of periodic solutions in a mosequito population suppression model with time delay. J. Differ. Equ. 2022, 315, 159–178. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, D.; Li, Y. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 2019, 572, 56–61. [Google Scholar] [CrossRef]
- Faraz, N.; Khan, Y.; Guofo, E. Dynamic analysis of the mathematical model of COVID-19 with demographic effects. Z. Naturfor. Sect. C A J. Biosci. 2020, 75, 389–396. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Xing, Y. Modeling Wolbachia diffusion in mosquito populations by discrete competition model. Discrete Dyn. Nat. Soc. 2020, 2020, 8987490. [Google Scholar]
- Werren, J.H.; Baldo, L.; Clark, M.E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008, 6, 741–751. [Google Scholar] [CrossRef]
- Gadgil, M. Dispersal: Population consequences and evolution. Ecology 1971, 52, 253–261. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C. Exponential Synchronization of Memristor-Based Competitive Neural Networks With Reaction-Diffusions and Infinite Distributed Delays. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Guo, Z.; Guo, H.; Chen, Y. Traveling wavefronts of a delayed temporally discrete reaction-diffusion equation. J. Math. Anal. Appl. 2021, 496, 1–22. [Google Scholar] [CrossRef]
- Leman, H.; Meleard, S.; Mirrahimi, S. Influence of a spatial structure on the long time behavior of a competitive Lotka-Volterra type system. Discret. Contin. Dyn. Syst. Ser. B 2017, 20, 469–493. [Google Scholar] [CrossRef]
- Cantrell, R.S.; Cosner, C. Spatial Ecology via Reaction-Diffusion Equations; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Weinberger, H.F. Long-time behavior of a class of biological models. SIAM J. Math. Anal. 1982, 13, 353–396. [Google Scholar] [CrossRef]
- Kot, M.; Schaffer, W. Discrete-time growth-dispersal models. Math. Biosci. 1986, 80, 109–136. [Google Scholar] [CrossRef]
- Wu, F. Traveling wave solutions for an integrodifference equation of higher order. AIMS Math. 2022, 7, 16482–16497. [Google Scholar] [CrossRef]
- Lewis, M.; Li, B.; Weinberger, H.F. Spreading speed and linear determinacy for two species competition models. J. Math. Biol. 2002, 45, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Cobbold, C.; Lewis, M.; Lutscher, F.; Roland, J. How parasitism affects critical patch size in a host-parasitoid system: Application to forest tent caterpillar. Theor. Popul. Biol. 2005, 67, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Lutscher, F. Integrodifference Equations in Spatial Ecology; Springer: Berlin, Germany, 2019. [Google Scholar]
- Lutscher, F.; Lewis, M. Spatially-explicit matrix models. A mathematical analysis of stage-structured integrodifference equations. J. Math. Biol. 2004, 48, 293–324. [Google Scholar] [CrossRef] [PubMed]
- Van, R.K.; Lewis, M. Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol. 1997, 59, 107–137. [Google Scholar]
- Aarset, C.; Potzsche, C. Bifurcations in Periodic Integrodifference equations in C(Ω) I: Analytical results and Applications. Discret. Contin. Dyn. Syst. Ser. B 2021, 1, 1–60. [Google Scholar] [CrossRef]
- Kot, M. Elements of Mathematical Ecology; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Jing, Z.; Yang, J. Bifurcation and chaos in discrete-time predator-prey system. Chaos Solitons Fractals 2006, 27, 259–277. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Montgomery, B.L.; Popovici, J. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 2011, 476, 454–457. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Guo, Z. Wolbachia Invasion Dynamics by Integrodifference Equations. Mathematics 2022, 10, 4253. https://doi.org/10.3390/math10224253
Li Y, Guo Z. Wolbachia Invasion Dynamics by Integrodifference Equations. Mathematics. 2022; 10(22):4253. https://doi.org/10.3390/math10224253
Chicago/Turabian StyleLi, Yijie, and Zhiming Guo. 2022. "Wolbachia Invasion Dynamics by Integrodifference Equations" Mathematics 10, no. 22: 4253. https://doi.org/10.3390/math10224253
APA StyleLi, Y., & Guo, Z. (2022). Wolbachia Invasion Dynamics by Integrodifference Equations. Mathematics, 10(22), 4253. https://doi.org/10.3390/math10224253