High-Enthalpy Geothermal Simulation with Continuous Localization in Physics
Abstract
:1. Introduction
2. Methodology
3. Operator-Based Linearization (OBL) Approach
4. Single-Cell Problem with ‘Negative Compressibility’
4.1. Formulations
- 1.
- Neglect the rock energy;
- 2.
- Heat conduction is ignored;
- 3.
- Rock is incompressible.
4.2. Newton Path
4.3. Operators
5. Continuous Localization in Physics
5.1. Continuous Localization of the Newton Iteration
5.2. Convergence Analysis
5.3. One-Dimensional Test Case
5.4. Two-Dimensional Test Case
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Sullivan, M.; Yeh, A.; Mannington, W. Renewability of geothermal resources. Geothermics 2010, 39, 314–320. [Google Scholar] [CrossRef]
- Lund, J.; Boyd, T. Direct utilization of geothermal energy 2015 worldwide review. Geothermics 2016, 60, 66–93. [Google Scholar] [CrossRef]
- Barbier, E. Geothermal energy technology and current status: An overview. Renew. Sustain. Energy Rev. 2002, 6, 3–65. [Google Scholar] [CrossRef]
- Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; van Wees, J.D. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization. Renew. Sustain. Energy Rev. 2018, 82, 961–975. [Google Scholar] [CrossRef]
- Kivanc Ates, H.; Serpen, U. Power plant selection for medium to high enthalpy geothermal resources of Turkey. Energy 2016, 102, 287–301. [Google Scholar] [CrossRef]
- Coats, K.H.; George, W.D.; Chu, C.; Marcum, B.E. Three-dimensional simulation of steamflooding. Soc. Pet. Eng. J. 1974, 14, 573–592. [Google Scholar] [CrossRef]
- Coats, K.H. Reservoir simulation: A general model formulation and associated physical/numerical sources of instability. In Proceedings of the BAIL I Conference held at Trinity College, Dublin, Ireland, 1 January 1980. [Google Scholar]
- Pruess, K.; Oldenburg, C.M.; Moridis, G.J. Tough2 User’s Guide; Lawrence Berkeley National Lab. (LBNL): Berkeley, CA, USA, 1999.
- Pruess, K.; Calore, C.; Celati, R.; Wu, Y.S. An analytical solution for heat transfer at a boiling front moving through a porous medium. Int. J. Heat Mass Transf. 1987, 30, 2595–2602. [Google Scholar] [CrossRef]
- Falta, R.W.; Pruess, K.; Javandel, I.; Witherspoon, P.A. Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface: 1. Numerical formulation. Water Resour. Res. 1992, 28, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. A stability criterion for the negative compressibility problem in geothermal simulation and discrete modeling of failure in oil shale pyrolysis process. Master’s Thesis, Stanford University, Stanford, CA, USA, 2015. [Google Scholar]
- Wong, Z.Y.; Horne, R.; Voskov, D. A geothermal reservoir simulator in AD-GPRS. In Proceedings of the World Geothermal Congress, Melbourne Convention and Exhibition Center (MCEC), Melbourne, Australia, 13–16 September 2018. [Google Scholar]
- Wong, Z.Y.; Rin, R.; Tchelepi, H.; Horne, R. Comparison of fully implicit and sequential implicit formulation for geothermal reservoir simulations. In Proceedings of the Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 3–15 February 2017. [Google Scholar]
- Wagner, W.; Kretzschmar, H.J. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Collins, D.A.; Nghiem, L.X.; Li, Y.K.; Grabenstetter, J.E. An efficient approach to adaptive-implicit compositional simulation with an equation of state. SPE Reserv. Eng. 1992, 7, 259–264. [Google Scholar] [CrossRef]
- Voskov, D. Operator-based linearization approach for modeling of multiphase multi-component flow in porous media. J. Comput. Phys. 2017, 337, 275–288. [Google Scholar] [CrossRef]
- Wang, Y.; Voskov, D.; Khait, M.; Saeid, S.; Bruhn, D. Influential factors on the development of a low-enthalpy geothermal reservoir: A sensitivity study of a realistic field. Renew. Energy 2021, 179, 641–651. [Google Scholar] [CrossRef]
- Delft Advanced Research Terra Simulator. Available online: https://darts.citg.tudelft.nl (accessed on 1 October 2022).
- Wang, Y.; Voskov, D.; Khait, M.; Bruhn, B. An efficient numerical simulator for geothermal simulation: A benchmark study. Appl. Energy 2020, 264, 114693. [Google Scholar] [CrossRef]
- Faust, C.R.; Mercer, J.W. Summary of our research in geothermal reservoir simulation. In Proceedings of the Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 15–17 December 1975. [Google Scholar]
- Khait, M.; Voskov, D. Operator-based linearization for efficient modeling of geothermal processes. Geothermics 2018, 74, 7–18. [Google Scholar] [CrossRef]
- Wong, Z.Y.; Horne, R.; Tchelepi, H. Sequential implicit nonlinear solver for geothermal simulation. J. Comput. Phys. 2018, 368, 236–253. [Google Scholar] [CrossRef]
Parameters | Conventional Method | Continuous Localization in Physics Method |
---|---|---|
Resolution of parameterization in (p, h) space | (128, 128) | (128, 4) » (128, 8) » (128, 32) » (128, 128) |
Total Newton iteration | 3325 | 683 |
Wasted Newton iteration | 760 | 80 |
CPU time, second | 14.9 | 4.2 |
Parameters | Unit | Values |
---|---|---|
Initial pressure | bar | 10 |
Initial enthalpy | kJ/kg | 1000 |
Initial water saturation | - | 0.04 |
Injection pressure | bar | 90 |
Injection enthalpy | kJ/kg | 100 |
Injection water saturation | - | 1.0 |
Parameters | Conventional Method | Continuous Localization in Physics Method |
---|---|---|
Resolution of parameterization in (p, h) space | (128, 128) | (128, 4) » (128, 8) » (128, 32) » (128, 128) |
Total Newton iteration | 2374 | 873 |
Wasted Newton iteration | 1140 | 280 |
CPU time, second | 96 | 37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Voskov, D. High-Enthalpy Geothermal Simulation with Continuous Localization in Physics. Mathematics 2022, 10, 4328. https://doi.org/10.3390/math10224328
Wang Y, Voskov D. High-Enthalpy Geothermal Simulation with Continuous Localization in Physics. Mathematics. 2022; 10(22):4328. https://doi.org/10.3390/math10224328
Chicago/Turabian StyleWang, Yang, and Denis Voskov. 2022. "High-Enthalpy Geothermal Simulation with Continuous Localization in Physics" Mathematics 10, no. 22: 4328. https://doi.org/10.3390/math10224328
APA StyleWang, Y., & Voskov, D. (2022). High-Enthalpy Geothermal Simulation with Continuous Localization in Physics. Mathematics, 10(22), 4328. https://doi.org/10.3390/math10224328