Three-Parameter Estimation Method of Multiple Hybrid Weibull Distribution Based on the EM Optimization Algorithm
Abstract
:1. Introduction
2. Multiple Multi-Parameter Estimation Method
3. Three-Parameter Mixed WEIBULL Distribution Model Establishment
4. Parameter Estimation Based on the EM Algorithm
4.1. Parameter Estimation Model of the EM Algorithm
- Select the initial values of the parameters and start the iteration;
- Step E: denote as the estimated value of the parameter of the ith iteration, and at the (i + 1)th iteration of step E, calculate
- Step M: Find the that maximizes and determine the estimate of the parameter for the (i + 1)th iteration
- Repeat step (2) and step (3) until convergence.
4.2. Solution by the EM Algorithm
4.2.1. Step E
4.2.2. Step M
- Since the weight coefficients must add up to 1, it is necessary to introduce the Lagrange multiplier λ to bound ω, make , we can obtain
- Great likelihood of the probability density function yields
5. Instance Verification
5.1. m-Fold Weibull Distribution Simulation
5.2. Application
5.2.1. Parameter Initial Value Selection and Fitting Results
5.2.2. Goodness-of-Fit Test
5.3. Analysis of Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Jiang, W. Parameter estimation method of mixed weibull distribution in reliability analysis of aircraft% mixed Weibull distribution parameter estimation method. J. Eng. Des. 2015, 22, 26. [Google Scholar]
- Razali, A.M.; Al-Wakeel, A.A. Mixture Weibull distributions for fitting failure times data. Appl. Math. Comput. 2013, 219, 11358–11364. [Google Scholar] [CrossRef]
- Barraza-Contreras, J.M.; Piña-Monarrez, M.R.; Molina, A. Fatigue-life prediction of mechanical element by using the Weibull distribution. Appl. Sci. 2020, 10, 6384. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Z. Fatigue life prediction method of mechanical parts based on Weibull distribution. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 782. [Google Scholar]
- Jiang, P.; Xing, Y.; Jia, X.; Guo, B. Weibull failure probability estimation based on zero-failure data. Math. Probl. Eng. 2015, 2015, 681232. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Li, W.; Xu, J. Study on the PSN Curve of Sucker Rod Based on Three-Parameter Weibull Distribution. Materials 2022, 15, 560. [Google Scholar] [CrossRef]
- Ling, D.; Huang, H.Z.; Liu, Y. A method for parameter estimation of Mixed Weibull distribution. In Proceedings of the 2009 Annual Reliability and Maintainability Symposium, Fort Worth, TX, USA, 26–29 January 2009. [Google Scholar]
- Fajdiga, N.M. An improved algorithm for parameter estimation suitable for mixed Weibull distributions. Int. J. Fatigue 2000, 22, 75–80. [Google Scholar]
- Lu, Z.; Dong, L.; Zhou, J. Nonlinear least squares estimation for parameters of mixed Weibull distributions by using particle swarm optimization. IEEE Access 2019, 7, 60545–60554. [Google Scholar] [CrossRef]
- Elmahdy, E.E.; Aboutahoun, A.W. A new approach for parameter estimation of finite Weibull mixture distributions for reliability modeling. Appl. Math. Model. 2013, 37, 1800–1810. [Google Scholar] [CrossRef]
- Al-Baidhani, P.A.; Sinclair, C.D. Comparison of methods of estimation of parameters of the Weibull distribution. Commun. Stat. Simul. Comput. 1987, 16, 373–384. [Google Scholar] [CrossRef]
- Maqsood, A.; Aslam, M. A comparative study to estimate the parameters of mixed-Weibull distribution. Pakistan J. Stat. Op. Res. 2008, 4, 1–8. [Google Scholar] [CrossRef]
- Du, G.P.; He, L.D.; Zhang, B. Reliability modeling of electrical engineering products based on mixed Weibull distribution. Elect. Meas. Instrum. 2014, 51, 21–25. [Google Scholar]
- Jiang, R.; Murthy, D.N.P. Mixture of Weibull distributions—parametric characterization of failure rate function. Appl. Stoch. Models Data Anal. 1998, 14, 47–65. [Google Scholar] [CrossRef]
- Moeini, A.; Jenab, K.; Mohammadi, M.; Foumani, M. Fitting the three-parameter Weibull distribution with Cross Entropy. Appl. Math. Model. 2013, 37, 6354–6363. [Google Scholar] [CrossRef]
- Ismail, A.A. Estimating the parameters of Weibull distribution and the acceleration factor from hybrid partially accelerated life test. Appl. Math. Model. 2012, 36, 2920–2925. [Google Scholar] [CrossRef] [Green Version]
- Elmahdy, E.E. A new approach for Weibull modeling for reliability life data analysis. Appl. Math. Comput. 2015, 250, 708–720. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, G.; You, Y. Reliability assessment for very few failure data and Weibull distribution. Math. Probl. Eng. 2019, 2019, 8947905. [Google Scholar] [CrossRef]
- Roldán-Nofuentes, J.A.; Regad, S.B. Comparison of the average kappa coefficients of two binary diagnostic tests with missing data. Mathematics 2021, 9, 2834. [Google Scholar] [CrossRef]
- Tsai, T.R.; Lio, Y.; Ting, W.C. Em algorithm for mixture distributions model with type-i hybrid censoring scheme. Mathematics 2021, 9, 2483. [Google Scholar] [CrossRef]
- Abd El-Raheem, A.E.R.M.; Hosny, M.; Abu-Moussa, M.H. On progressive censored competing risks data: Real data application and simulation study. Mathematics 2021, 9, 1805. [Google Scholar] [CrossRef]
- Lee, P.M. Bayesian Statistics An Introduction. J. Am. Stat. Assoc. 1990, 85, 128. [Google Scholar]
- Mclachlan, G.; Peel, D. Finite Mixture Models; Springer: New York, NY, USA, 2004. [Google Scholar]
- Mclachlan, G.J.; Krishnan, T. The EM Algorithm and Extensions. Biometrics 1998, 382, 260. [Google Scholar]
- Dempster, A.P. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 1977, 39, 1–22. [Google Scholar]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: Berlin, Germany, 1999. [Google Scholar]
Parameter Estimation Methods | Parameter Estimation Value | |||||||
---|---|---|---|---|---|---|---|---|
ω1 | η1 | β1 | γ1 | ω2 | η2 | β2 | γ2 | |
Assuming parameter values | 0.35 | 1253 | 2.25 | 125 | 0.65 | 438 | 3.56 | 83 |
Two-parameter EM algorithm | 0.34 | 1402.7 | 2.7033 | 0.66 | 528.85 | 4.709 | ||
Three-parameter EM algorithm | 0.33 | 1290 | 2.56 | 135.03 | 0.67 | 458.22 | 3.901 | 70.1598 |
Parameter Estimation Methods | NRMSE |
---|---|
Two-parameter EM algorithm | 0.8229 |
Three-parameter EM algorithm | 0.8223 |
Failure Data | |||||
---|---|---|---|---|---|
14 | 34 | 59 | 61 | 69 | 80 |
123 | 142 | 165 | 210 | 381 | 464 |
479 | 556 | 574 | 839 | 917 | 969 |
991 | 1064 | 1088 | 1091 | 1174 | 1270 |
1275 | 1355 | 1397 | 1477 | 1578 | 1649 |
1702 | 1893 | 1932 | 2001 | 2161 | 2292 |
2326 | 2337 | 2628 | 2785 | 2811 | 2886 |
2993 | 3122 | 3248 | 3715 | 3790 | 3857 |
3912 | 4100 | 4106 | 4116 | 4315 | 4510 |
4584 | 5267 | 5299 | 5583 | 6065 | 9701 |
Parameter Estimation Methods | Parameter Estimation Value | |||||||
---|---|---|---|---|---|---|---|---|
ω1 | η1 | β1 | γ1 | ω2 | η2 | β2 | γ2 | |
Graph estimation method | 0.2 | 115.3 | 1.704 | 0.8 | 4511 | 1.733 | ||
Two-parameter EM algorithm | 0.1636 | 105.6869 | 1.5276 | 0.8364 | 2787.2 | 1.3576 | ||
Three-parameter EM algorithm | 0.1382 | 78.1578 | 1.1528 | 12.0441 | 0.8618 | 2764.4 | 1.3968 | 11.4615 |
Parameter Estimation Methods | NRMSE |
---|---|
Two-parameter EM algorithm | 0.5852 |
Three-parameter EM algorithm | 0.5778 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Sun, F.; Xu, F.; Zhang, Q.; Zhou, R.; Zhang, L.; Liang, Z. Three-Parameter Estimation Method of Multiple Hybrid Weibull Distribution Based on the EM Optimization Algorithm. Mathematics 2022, 10, 4337. https://doi.org/10.3390/math10224337
Dong X, Sun F, Xu F, Zhang Q, Zhou R, Zhang L, Liang Z. Three-Parameter Estimation Method of Multiple Hybrid Weibull Distribution Based on the EM Optimization Algorithm. Mathematics. 2022; 10(22):4337. https://doi.org/10.3390/math10224337
Chicago/Turabian StyleDong, Xiaowei, Feng Sun, Fangchao Xu, Qi Zhang, Ran Zhou, Liang Zhang, and Zhongwei Liang. 2022. "Three-Parameter Estimation Method of Multiple Hybrid Weibull Distribution Based on the EM Optimization Algorithm" Mathematics 10, no. 22: 4337. https://doi.org/10.3390/math10224337
APA StyleDong, X., Sun, F., Xu, F., Zhang, Q., Zhou, R., Zhang, L., & Liang, Z. (2022). Three-Parameter Estimation Method of Multiple Hybrid Weibull Distribution Based on the EM Optimization Algorithm. Mathematics, 10(22), 4337. https://doi.org/10.3390/math10224337