On Solvability of Fractional (p,q)-Difference Equations with (p,q)-Difference Anti-Periodic Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- ;
- (iii)
- (iv)
3. Main Results
- (i)
- whenever ;
- (ii)
- A is compact and continuous;
- (iii)
- B is contraction mapping.
- There exists a function and a non-decreasing function such that where
- There exists a constant r with
- (i)
- has a fixed point in or
- (ii)
- there is a (the boundary of in ) and with
- There exist functions and a nondecreasing function such that
- There exists a number such that
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hounkonnou, M.N.; Désiré, J.; Kyemba, B.R. (p,q)-calculus: Differentiation and integration. SUT J. Math. 2013, 49, 145–167. [Google Scholar] [CrossRef]
- Sadjang, P.N. On the fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Results Math. 2018, 73, 21. [Google Scholar]
- Soontharanon, J.; Sitthiwirattham, T. On fractional (p,q)-calculus. Adv. Differ. Equ. 2020, 1, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sadjang, P.N. On two (p,q)-analogues of the Laplace transform. J. Differ. Equ. Appl. 2017, 23, 1562–1583. [Google Scholar]
- Médics, A.D.; Leroux, P. Generalized Stirling numbers, convolution formulae and p,q-analogues. Canad. J. Math. 1995, 47, 474–499. [Google Scholar] [CrossRef] [Green Version]
- Burban, I. Two-parameter deformation of the oscillator algebra and (p,q)-analog of two-dimensional conformal field theory. Symmetry in nonlinear mathematical physics, Vol. 1 (Kiev, 1995). J. Nonlinear Math. Phys. 1995, 2, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.-B.; Zhou, G. On (p,q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. Appl. Math. Comput. 2016, 275, 12–20. [Google Scholar] [CrossRef]
- Burban, I.M.; Klimyk, A.U. P,Q-differentiation, P,Q-integration, and P,Q-hypergeometric functions related to quantum groups. Integral Transform. Spec. Funct. 1994, 2, 15–36. [Google Scholar] [CrossRef]
- Chakrabarti, R.; Jagannathan, R. A (p,q)-oscillator realization of two-parameter quantum algebras. J. Phys. A 1991, 24, L711–L718. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. Applications of (p,q)-gamma function to Szász durrmeyer operators. Publ. Inst. Math. (Beograd) (N.S.) 2017, 102, 211–220. [Google Scholar] [CrossRef]
- Kamsrisuk, N.; Promsakon, C.; Ntouyas, S.K.; Tariboon, J. Nonlocal boundary value problems for (p,q)-difference equations. Differ. Equ. Appl. 2018, 10, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Promsakon, C.; Kamsrisuk, N.; Ntouyas, S.K.; Tariboon, J. On the second-order (p,q)-difference equation with separated boundary conditions. Adv. Math. Phys. 2018, 2018, 1–9. [Google Scholar] [CrossRef]
- Nuntigrangjana, T.; Putjuso, S.; Ntouyas, S.K.; Tariboon, J. Impulsive quantum (p,q)-difference equations. Adv. Differ. Equ. 2020, 2020, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Dumrongpokaphan, T.; Ntouyas, S.K.; Sitthiwirattham, T. Separate fractional (p,q)-integrodifference equations via nonlocal fractional (p,q)-integral boundary conditions. Symmetry 2021, 13, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y. Multiple positive solutions for a class of boundary value problem of fractional (p,q)-difference equations under (p,q)-integral boundary conditions. J. Math. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Ahmad, B. Nonlocal boundary value problems of nonlinear fractional (p,q)- difference equations. Fractal Fract. 2021, 5, 270. [Google Scholar] [CrossRef]
- Soontharanon, J.; Sitthiwirattham, T. On sequential fractional Caputo (p,q)-integrodifference equations via three-point fractional Riemann-Liouville (p,q)-difference boundary condition. AIMS Math. 2022, 7, 704–722. [Google Scholar] [CrossRef]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Uspekhi. Mat. Nauk. 1995, 10, 123–127. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory and Applications; Springer: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, R.P.; Al-Hutami, H.; Ahmad, B. On Solvability of Fractional (p,q)-Difference Equations with (p,q)-Difference Anti-Periodic Boundary Conditions. Mathematics 2022, 10, 4419. https://doi.org/10.3390/math10234419
Agarwal RP, Al-Hutami H, Ahmad B. On Solvability of Fractional (p,q)-Difference Equations with (p,q)-Difference Anti-Periodic Boundary Conditions. Mathematics. 2022; 10(23):4419. https://doi.org/10.3390/math10234419
Chicago/Turabian StyleAgarwal, Ravi P., Hana Al-Hutami, and Bashir Ahmad. 2022. "On Solvability of Fractional (p,q)-Difference Equations with (p,q)-Difference Anti-Periodic Boundary Conditions" Mathematics 10, no. 23: 4419. https://doi.org/10.3390/math10234419
APA StyleAgarwal, R. P., Al-Hutami, H., & Ahmad, B. (2022). On Solvability of Fractional (p,q)-Difference Equations with (p,q)-Difference Anti-Periodic Boundary Conditions. Mathematics, 10(23), 4419. https://doi.org/10.3390/math10234419