Embedded Learning Approaches in the Whale Optimizer to Solve Coverage Combinatorial Problems
Abstract
:1. Introduction
- A new smart binarization scheme selector is proposed.
- The Q-learning technique, proposed in [21], is used to binarize the whale optimization algorithm.
- A selector with a much wider repertoire in its actions is obtained from the literature.
2. Set Covering Problem
3. Reinforcement Learning
3.1. Q-Learning
3.2. SARSA
4. Whale Optimization Algorithm: Fundamentals
4.1. Identifying the Prey
4.2. Encircling the Prey
4.3. Bubble Netting Technique
Algorithm 1 Whale Optimization Algorithm |
Input: The population Output: The updated population and
|
5. Whale Optimization Algorithm: Q-Binary Version
Type | Transfer Function |
---|---|
S1 [38,39] | |
S2 [39,40] | |
S3 [38,39] | |
S4 [38,39] | |
V1 [39,41] | |
V2 [39,41] | |
V3 [38,39] | |
V4 [38,39] | |
X1 [42,43] | |
X2 [42,43] | |
X3 [42,43] | |
X4 [42,43] | |
Z1 [44,45] | |
Z2 [44,45] | |
Z3 [44,45] | |
Z4 [44,45] |
Type | Binarization |
---|---|
Standard | |
Complement | |
Static Probability | |
Elitist | |
Roulette Elitist |
Algorithm 2 Q-Binary Whale Optimization Algorithm |
Input: The population Output: The updated population and
|
5.1. Exploration and Exploitation of Actions
5.2. Feasibility and Repair Heuristic
Algorithm 3 Feasibility Heuristic |
Input: Matrix A of incidence and solution Output: coverage, is number of columns covering a row and feasibility
|
Algorithm 4 Repair heuristics |
Input: Matrix A of incidence and unfeasible solution Output: feasible solution
|
5.3. Complexity Analysis
6. Experimentation Results
Analyses of Exploration and Exploitation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, H.; Liu, B.; Cai, D.; Lu, T. Predicting protein–protein interaction sites using modified support vector machine. Int. J. Mach. Learn. Cybern. 2018, 9, 393–398. [Google Scholar] [CrossRef]
- Korkmaz, S.; Babalik, A.; Kiran, M.S. An artificial algae algorithm for solving binary optimization problems. Int. J. Mach. Learn. Cybern. 2018, 9, 1233–1247. [Google Scholar] [CrossRef]
- Penadés-Plà, V.; García-Segura, T.; Yepes, V. Robust design optimization for low-cost concrete box-girder bridge. Mathematics 2020, 8, 398. [Google Scholar] [CrossRef] [Green Version]
- Crawford, B.; Soto, R.; Lemus-Romani, J.; Astorga, G.; Matus de la Parra, S.; Peña-Fritz, A.; Valenzuela, M.; García, J.; de la Fuente-Mella, H.; Castro, C.; et al. Investigating the efficiency of swarm algorithms for bridge strengthening by conversion to tied-arch: A numerical case study on San Luis bridge. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 2345–2357. [Google Scholar] [CrossRef]
- Lemus-Romani, J.; Alonso, B.; Moura, J.L.; Crawford, B.; Soto, R.; González, F. Limited Stop Services Design Considering Variable Dwell Time and Operating Capacity Constraints. IEEE Access 2021, 9, 30359–30373. [Google Scholar] [CrossRef]
- Al-Madi, N.; Faris, H.; Mirjalili, S. Binary multi-verse optimization algorithm for global optimization and discrete problems. Int. J. Mach. Learn. Cybern. 2019, 10, 3445–3465. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting continuous metaheuristics to work in binary search spaces. Complexity 2017, 2017, 8404231. [Google Scholar] [CrossRef] [Green Version]
- Talbi, E.G. Combining metaheuristics with mathematical programming, constraint programming and machine learning. Ann. Oper. Res. 2016, 240, 171–215. [Google Scholar] [CrossRef]
- Talbi, E.G. Machine learning into metaheuristics: A survey and taxonomy. ACM Comput. Surv. (CSUR) 2021, 54, 1–32. [Google Scholar] [CrossRef]
- García, J.; Crawford, B.; Soto, R.; Castro, C.; Paredes, F. A k-means binarization framework applied to multidimensional knapsack problem. Appl. Intell. 2018, 48, 357–380. [Google Scholar] [CrossRef]
- García, J.; Moraga, P.; Valenzuela, M.; Crawford, B.; Soto, R.; Pinto, H.; Peña, A.; Altimiras, F.; Astorga, G. A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Comput. Intell. Neurosci. 2019, 2019, 3238574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caserta, M.; Voß, S. Metaheuristics: Intelligent problem solving. In Matheuristics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–38. [Google Scholar]
- Schermer, D.; Moeini, M.; Wendt, O. A matheuristic for the vehicle routing problem with drones and its variants. Transp. Res. Part Emerg. Technol. 2019, 106, 166–204. [Google Scholar] [CrossRef]
- Roshani, M.; Phan, G.; Roshani, G.H.; Hanus, R.; Nazemi, B.; Corniani, E.; Nazemi, E. Combination of X-ray tube and GMDH neural network as a nondestructive and potential technique for measuring characteristics of gas-oil–water three phase flows. Measurement 2021, 168, 108427. [Google Scholar] [CrossRef]
- Roshani, S.; Jamshidi, M.B.; Mohebi, F.; Roshani, S. Design and modeling of a compact power divider with squared resonators using artificial intelligence. Wirel. Pers. Commun. 2021, 117, 2085–2096. [Google Scholar] [CrossRef]
- Nazemi, B.; Rafiean, M. Forecasting house prices in Iran using GMDH. Int. J. Hous. Mark. Anal. 2020. [Google Scholar] [CrossRef]
- Karimi-Mamaghan, M.; Mohammadi, M.; Meyer, P.; Karimi-Mamaghan, A.M.; Talbi, E.G. Machine Learning at the service of Meta-heuristics for solving Combinatorial Optimization Problems: A state-of-the-art. Eur. J. Oper. Res. 2022, 296, 393–422. [Google Scholar]
- Zhao, F.; Zhang, L.; Cao, J.; Tang, J. A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem. Comput. Ind. Eng. 2021, 153, 107082. [Google Scholar] [CrossRef]
- Mosadegh, H.; Ghomi, S.F.; Süer, G.A. Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics. Eur. J. Oper. Res. 2020, 282, 530–544. [Google Scholar] [CrossRef]
- Becerra-Rozas, M.; Lemus-Romani, J.; Crawford, B.; Soto, R.; Cisternas-Caneo, F.; Embry, A.T.; Molina, M.A.; Tapia, D.; Castillo, M.; Misra, S.; et al. Reinforcement Learning Based Whale Optimizer. In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 13–16 September 2021; pp. 205–219. [Google Scholar]
- Becerra-Rozas, M.; Lemus-Romani, J.; Crawford, B.; Soto, R.; Cisternas-Caneo, F.; Embry, A.T.; Molina, M.A.; Tapia, D.; Castillo, M.; Rubio, J.M. A New Learnheuristic: Binary SARSA-Sine Cosine Algorithm (BS-SCA). In Proceedings of the International Conference on Metaheuristics and Nature Inspired Computing, Marrakech, Morocco, 27–30 October 2021; pp. 127–136. [Google Scholar]
- Cisternas-Caneo, F.; Crawford, B.; Soto, R.; de la Fuente-Mella, H.; Tapia, D.; Lemus-Romani, J.; Castillo, M.; Becerra-Rozas, M.; Paredes, F.; Misra, S. A Data-Driven Dynamic Discretization Framework to Solve Combinatorial Problems Using Continuous Metaheuristics. In Innovations in Bio-Inspired Computing and Applications; Abraham, A., Sasaki, H., Rios, R., Gandhi, N., Singh, U., Ma, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 76–85. [Google Scholar] [CrossRef]
- Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman: San Francisco, CA, USA, 1979; Volume 174. [Google Scholar]
- Vianna, S.S. The set covering problem applied to optimisation of gas detectors in chemical process plants. Comput. Chem. Eng. 2019, 121, 388–395. [Google Scholar] [CrossRef]
- Zhang, L.; Shaffer, B.; Brown, T.; Samuelsen, G.S. The optimization of DC fast charging deployment in California. Appl. Energy 2015, 157, 111–122. [Google Scholar] [CrossRef]
- Park, Y.; Nielsen, P.; Moon, I. Unmanned aerial vehicle set covering problem considering fixed-radius coverage constraint. Comput. Oper. Res. 2020, 119, 104936. [Google Scholar] [CrossRef]
- Alizadeh, R.; Nishi, T. Hybrid set covering and dynamic modular covering location problem: Application to an emergency humanitarian logistics problem. Appl. Sci. 2020, 10, 7110. [Google Scholar] [CrossRef]
- Vieira, B.S.; Ferrari, T.; Ribeiro, G.M.; Bahiense, L.; Orrico Filho, R.D.; Abramides, C.A.; Júnior, N.F.R.C. A progressive hybrid set covering based algorithm for the traffic counting location problem. Expert Syst. Appl. 2020, 160, 113641. [Google Scholar] [CrossRef]
- Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [Google Scholar] [CrossRef]
- Lazaric, A.; Restelli, M.; Bonarini, A. Reinforcement learning in continuous action spaces through sequential monte carlo methods. In Proceedings of the 20th International Conference on Neural Information Processing Systems 2007, Vancouver, BC, Canada, 3–6 December 2007; Volume 20. [Google Scholar]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Dewi, S.K.; Utama, D.M. A new hybrid whale optimization algorithm for green vehicle routing problem. Syst. Sci. Control. Eng. 2021, 9, 61–72. [Google Scholar] [CrossRef]
- Utama, D.M.; Widodo, D.S.; Ibrahim, M.F.; Hidayat, K.; Baroto, T.; Yurifah, A. The hybrid whale optimization algorithm: A new metaheuristic algorithm for energy-efficient on flow shop with dependent sequence setup. J. Phys. Conf. Ser. IOP Publ. 2020, 1569, 022094. [Google Scholar] [CrossRef]
- Utama, D. Minimizing Number of Tardy Jobs in Flow Shop Scheduling Using A Hybrid Whale Optimization Algorithm. J. Phys. Conf. Ser. IOP Publ. 2021, 1845, 012017. [Google Scholar] [CrossRef]
- Lanza-Gutierrez, J.M.; Caballe, N.; Crawford, B.; Soto, R.; Gomez-Pulido, J.A.; Paredes, F. Exploring further advantages in an alternative formulation for the set covering problem. Math. Probl. Eng. 2020, 2020, 5473501. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Lemus-Romani, J.; Becerra-Rozas, M.; Lanza-Gutiérrez, J.M.; Caballé, N.; Castillo, M.; Tapia, D.; Cisternas-Caneo, F.; García, J.; et al. Q-learnheuristics: Towards data-driven balanced metaheuristics. Mathematics 2021, 9, 1839. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Olivares-Suarez, M.; Palma, W.; Paredes, F.; Olguin, E.; Norero, E. A binary coded firefly algorithm that solves the set covering problem. Rom. J. Inf. Sci. Technol. 2014, 17, 252–264. [Google Scholar]
- Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 2013, 9, 1–14. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K. Performance enhancement of radial distributed system with distributed generators by reconfiguration using binary firefly algorithm. J. Inst. Eng. (India) Ser. B 2015, 96, 91–99. [Google Scholar] [CrossRef]
- Ghosh, K.K.; Singh, P.K.; Hong, J.; Geem, Z.W.; Sarkar, R. Binary social mimic optimization algorithm with x-shaped transfer function for feature selection. IEEE Access 2020, 8, 97890–97906. [Google Scholar] [CrossRef]
- Beheshti, Z. A novel x-shaped binary particle swarm optimization. Soft Comput. 2021, 25, 3013–3042. [Google Scholar] [CrossRef]
- Guo, S.s.; Wang, J.s.; Guo, M.w. Z-shaped transfer functions for binary particle swarm optimization algorithm. Comput. Intell. Neurosci. 2020, 2020, 6502807. [Google Scholar] [CrossRef]
- Sun, W.Z.; Zhang, M.; Wang, J.S.; Guo, S.S.; Wang, M.; Hao, W.K. Binary Particle Swarm Optimization Algorithm Based on Z-shaped Probability Transfer Function to Solve 0-1 Knapsack Problem. IAENG Int. J. Comput. Sci. 2021, 48, 294–303. [Google Scholar]
- Lanza-Gutierrez, J.M.; Crawford, B.; Soto, R.; Berrios, N.; Gomez-Pulido, J.A.; Paredes, F. Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization. Expert Syst. Appl. 2017, 70, 67–82. [Google Scholar] [CrossRef]
- Beasley, J.; Jörnsten, K. Enhancing an algorithm for set covering problems. Eur. J. Oper. Res. 1992, 58, 293–300. [Google Scholar] [CrossRef]
- Bisong, E. Google Colaboratory. In Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 59–64. [Google Scholar] [CrossRef]
- Morales-Castañeda, B.; Zaldivar, D.; Cuevas, E.; Fausto, F.; Rodríguez, A. A better balance in metaheuristic algorithms: Does it exist? Swarm Evol. Comput. 2020, 54, 100671. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Cisternas-Caneo, F.; Tapia, D.; de la Fuente-Mella, H.; Palma, W.; Lemus-Romani, J.; Castillo, M.; Becerra-Rozas, M. A Comparison of Learnheuristics Using Different Reward Functions to Solve the Set Covering Problem. In Optimization and Learning; Dorronsoro, B., Amodeo, L., Pavone, M., Ruiz, P., Eds.; Springer International Publishing: Cham, Switzerlan, 2021; pp. 74–85. [Google Scholar] [CrossRef]
- Lemus-Romani, J.; Becerra-Rozas, M.; Crawford, B.; Soto, R.; Cisternas-Caneo, F.; Vega, E.; Castillo, M.; Tapia, D.; Astorga, G.; Palma, W.; et al. A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems. Mathematics 2021, 9, 2887. [Google Scholar] [CrossRef]
- Hussain, K.; Zhu, W.; Salleh, M.N.M. Long-term memory Harris’ hawk optimization for high dimensional and optimal power flow problems. IEEE Access 2019, 7, 147596–147616. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Independent runs | 31 |
Number of populations | 40 |
Number of iterations | 1000 |
parameter a of WOA | decreases linearly from 2 to 0 |
parameter b of WOA | 1 |
parameter of Q-Learning and SARSA | 0.1 |
parameter of Q-Learning and SARSA | 0.4 |
QBWOA | BSWOA | BCL | MIR | 40BQWOA | 40BSWOA | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inst. | Opt | Best | Avg | RPD | Opt | Best | Avg | RPD | Opt | Best | Avg | RPD | Opt | Best | Avg | RPD | Opt | Best | Avg | RPD | Opt | Best | Avg | RPD |
41 | 429 | 431.0 | 781.87 | 0.47 | 429 | 430.0 | 610.0 | 0.23 | 429 | 489.0 | 607.55 | 13.99 | 429 | 638.0 | 715.87 | 48.72 | 429 | 435 | 439.48 | 1.4 | 429 | 430 | 434.6 | 0.23 |
42 | 512 | 522.0 | 839.19 | 1.95 | 512 | 519.0 | 872.87 | 1.37 | 512 | 679.0 | 852.94 | 32.62 | 512 | 1079.0 | 1181.94 | 110.74 | 512 | 538 | 546.44 | 5.08 | 512 | 523 | 535.6 | 2.15 |
43 | 516 | 519.0 | 912.03 | 0.58 | 516 | 520.0 | 979.13 | 0.78 | 516 | 739.0 | 884.48 | 43.22 | 516 | 1222.0 | 1293.61 | 136.82 | 516 | 537 | 543.78 | 4.07 | 516 | 525 | 532.7 | 1.74 |
44 | 494 | 500.0 | 789.13 | 1.21 | 494 | 503.0 | 776.26 | 1.82 | 494 | 596.0 | 779.06 | 20.65 | 494 | 954.0 | 1052.03 | 93.12 | 494 | 519 | 526.33 | 5.06 | 494 | 497 | 508.0 | 0.61 |
45 | 512 | 517.0 | 913.68 | 0.98 | 512 | 520.0 | 1032.16 | 1.56 | 512 | 755.0 | 874.68 | 47.46 | 512 | 1067.0 | 1204.13 | 108.4 | 512 | 537 | 541.89 | 4.88 | 512 | 523 | 528.4 | 2.15 |
46 | 560 | 565.0 | 1007.32 | 0.89 | 560 | 564.0 | 1028.68 | 0.71 | 560 | 815.0 | 981.26 | 45.54 | 560 | 1389.0 | 1483.13 | 148.04 | 560 | 573 | 580.33 | 2.32 | 560 | 567 | 570.3 | 1.25 |
47 | 430 | 433.0 | 710.55 | 0.7 | 430 | 434.0 | 645.0 | 0.93 | 430 | 570.0 | 682.42 | 32.56 | 430 | 854.0 | 931.84 | 98.6 | 430 | 440 | 445.29 | 2.33 | 430 | 435 | 439.5 | 1.16 |
48 | 492 | 496.0 | 950.55 | 0.81 | 492 | 497.0 | 836.39 | 1.02 | 492 | 713.0 | 875.42 | 44.92 | 492 | 1148.0 | 1236.16 | 133.33 | 492 | 505 | 507.83 | 2.64 | 492 | 496 | 499.6 | 0.81 |
49 | 641 | 659.0 | 1297.0 | 2.81 | 641 | 664.0 | 1422.0 | 3.59 | 641 | 922.0 | 1141.55 | 43.84 | 641 | 1532.0 | 1706.1 | 139.0 | 641 | 686 | 690.8 | 7.02 | 641 | 671 | 677.6 | 4.68 |
410 | 514 | 515.0 | 825.61 | 0.19 | 514 | 517.0 | 812.45 | 0.58 | 514 | 696.0 | 847.0 | 35.41 | 514 | 1046.0 | 1180.97 | 103.5 | 514 | 530 | 532.4 | 3.11 | 514 | 521 | 524.1 | 1.36 |
51 | 253 | 259.0 | 418.9 | 2.37 | 253 | 259.0 | 473.1 | 2.37 | 253 | 347.0 | 411.1 | 37.15 | 253 | 543.0 | 614.74 | 114.62 | 253 | 262 | 267.71 | 3.56 | 253 | 258 | 262.7 | 1.98 |
52 | 302 | 314.0 | 617.1 | 3.97 | 302 | 316.0 | 628.74 | 4.64 | 302 | 468.0 | 577.35 | 54.97 | 302 | 762.0 | 913.61 | 152.32 | 302 | 326 | 332.17 | 7.95 | 302 | 319 | 325.3 | 5.63 |
53 | 226 | 228.0 | 410.39 | 0.88 | 226 | 229.0 | 325.48 | 1.33 | 226 | 313.0 | 377.84 | 38.5 | 226 | 506.0 | 558.06 | 123.89 | 226 | 232 | 233.5 | 2.65 | 226 | 230 | 230.8 | 1.77 |
54 | 242 | 246.0 | 503.58 | 1.65 | 242 | 247.0 | 405.26 | 2.07 | 242 | 318.0 | 394.97 | 31.4 | 242 | 540.0 | 580.19 | 123.14 | 242 | 250 | 252.5 | 3.31 | 242 | 247 | 249.4 | 2.07 |
55 | 211 | 212.0 | 356.87 | 0.47 | 211 | 213.0 | 355.42 | 0.95 | 211 | 294.0 | 339.65 | 39.34 | 211 | 397.0 | 427.84 | 88.15 | 211 | 216 | 218.83 | 2.37 | 211 | 212 | 214.5 | 0.47 |
56 | 213 | 213.0 | 369.68 | 0.0 | 213 | 214.0 | 335.81 | 0.47 | 213 | 334.0 | 389.71 | 56.81 | 213 | 507.0 | 544.58 | 138.03 | 213 | 227 | 229.0 | 6.57 | 213 | 218 | 221.3 | 2.35 |
57 | 293 | 297.0 | 538.74 | 1.37 | 293 | 298.0 | 548.81 | 1.71 | 293 | 387.0 | 504.06 | 32.08 | 293 | 642.0 | 710.52 | 119.11 | 293 | 311 | 313.2 | 6.14 | 293 | 302 | 304.6 | 3.07 |
58 | 288 | 290.0 | 534.9 | 0.69 | 288 | 290.0 | 395.81 | 0.69 | 288 | 399.0 | 497.35 | 38.54 | 288 | 663.0 | 745.32 | 130.21 | 288 | 298 | 299.33 | 3.47 | 288 | 291 | 293.9 | 1.04 |
59 | 279 | 282.0 | 602.74 | 1.08 | 279 | 281.0 | 562.42 | 0.72 | 279 | 404.0 | 497.03 | 44.8 | 279 | 673.0 | 740.35 | 141.22 | 279 | 284 | 287.4 | 1.79 | 279 | 282 | 284.3 | 1.08 |
510 | 265 | 267.0 | 461.35 | 0.75 | 265 | 266.0 | 402.58 | 0.38 | 265 | 390.0 | 470.13 | 47.17 | 265 | 594.0 | 669.58 | 124.15 | 265 | 277 | 278.33 | 4.53 | 265 | 267 | 273.1 | 0.75 |
61 | 138 | 140.0 | 480.94 | 1.45 | 138 | 140.0 | 654.55 | 1.45 | 138 | 283.0 | 403.26 | 105.07 | 138 | 736.0 | 836.52 | 433.33 | 138 | 144 | 146.68 | 4.35 | 138 | 141 | 144.1 | 2.17 |
62 | 146 | 146.0 | 603.32 | 0.0 | 146 | 146.0 | 619.52 | 0.0 | 146 | 320.0 | 561.77 | 119.18 | 146 | 1100.0 | 1211.81 | 653.42 | 146 | 154 | 155.83 | 5.48 | 146 | 147 | 152.3 | 0.68 |
63 | 145 | 145.0 | 479.03 | 0.0 | 145 | 147.0 | 696.0 | 1.38 | 145 | 337.0 | 537.19 | 132.41 | 145 | 912.0 | 1125.97 | 528.97 | 145 | 149 | 150.4 | 2.76 | 145 | 147 | 148.4 | 1.38 |
64 | 131 | 132.0 | 308.0 | 0.76 | 131 | 131.0 | 376.81 | 0.0 | 131 | 246.0 | 366.19 | 87.79 | 131 | 652.0 | 722.42 | 397.71 | 131 | 132 | 134.17 | 0.76 | 131 | 131 | 133.1 | 0.0 |
65 | 161 | 162.0 | 842.87 | 0.62 | 161 | 162.0 | 652.77 | 0.62 | 161 | 357.0 | 531.74 | 121.74 | 161 | 1020.0 | 1155.81 | 533.54 | 161 | 180 | 181.5 | 11.8 | 161 | 163 | 172.2 | 1.24 |
a1 | 253 | 260.0 | 785.84 | 2.77 | 253 | 260.0 | 800.94 | 2.77 | 253 | 455.0 | 662.71 | 79.84 | 253 | 1243.0 | 1352.03 | 391.3 | 253 | 263 | 266.84 | 3.95 | 253 | 260 | 263.2 | 2.77 |
a2 | 252 | 259.0 | 886.87 | 2.78 | 252 | 263.0 | 910.58 | 4.37 | 252 | 452.0 | 651.16 | 79.37 | 252 | 1150.0 | 1241.0 | 356.35 | 252 | 266 | 269.83 | 5.56 | 252 | 261 | 264.0 | 3.57 |
a3 | 232 | 239.0 | 608.71 | 3.02 | 232 | 239.0 | 582.29 | 3.02 | 232 | 436.0 | 601.58 | 87.93 | 232 | 1066.0 | 1185.84 | 359.48 | 232 | 244 | 245.6 | 5.17 | 232 | 240 | 243.4 | 3.45 |
a4 | 234 | 237.0 | 794.77 | 1.28 | 234 | 237.0 | 672.42 | 1.28 | 234 | 467.0 | 595.97 | 99.57 | 234 | 1080.0 | 1161.45 | 361.54 | 234 | 251 | 251.8 | 7.26 | 234 | 238 | 242.5 | 1.71 |
a5 | 236 | 241.0 | 800.0 | 2.12 | 236 | 240.0 | 702.77 | 1.69 | 236 | 447.0 | 618.65 | 89.41 | 236 | 1139.0 | 1191.23 | 382.63 | 236 | 242 | 247.33 | 2.54 | 236 | 241 | 244.2 | 2.12 |
b1 | 69 | 69.0 | 1085.1 | 0.0 | 69 | 69.0 | 890.42 | 0.0 | 69 | 309.0 | 561.94 | 347.83 | 69 | 1344.0 | 1441.68 | 1847.83 | 69 | 70 | 71.68 | 1.45 | 69 | 69 | 70.5 | 0.0 |
b2 | 76 | 76.0 | 630.23 | 0.0 | 76 | 76.0 | 548.48 | 0.0 | 76 | 337.0 | 547.39 | 343.42 | 76 | 1265.0 | 1426.32 | 1564.47 | 76 | 78 | 79.5 | 2.63 | 76 | 76 | 77.2 | 0.0 |
b3 | 80 | 80.0 | 912.77 | 0.0 | 80 | 80.0 | 648.65 | 0.0 | 80 | 378.0 | 689.84 | 372.5 | 80 | 1737.0 | 1848.74 | 2071.25 | 80 | 82 | 82.17 | 2.5 | 80 | 81 | 81.7 | 1.25 |
b4 | 79 | 79.0 | 978.26 | 0.0 | 79 | 79.0 | 1268.35 | 0.0 | 79 | 334.0 | 631.39 | 322.78 | 79 | 1514.0 | 1644.03 | 1816.46 | 79 | 83 | 83.83 | 5.06 | 79 | 79 | 81.3 | 0.0 |
b5 | 72 | 72.0 | 785.74 | 0.0 | 72 | 72.0 | 959.45 | 0.0 | 72 | 299.0 | 541.81 | 315.28 | 72 | 1372.0 | 1467.52 | 1805.56 | 72 | 73 | 74.33 | 1.39 | 72 | 72 | 72.9 | 0.0 |
c1 | 227 | 234.0 | 812.35 | 3.08 | 227 | 233.0 | 794.55 | 2.64 | 227 | 523.0 | 717.65 | 130.4 | 227 | 1488.0 | 1610.13 | 555.51 | 227 | 243 | 247.81 | 7.05 | 227 | 234 | 238.4 | 3.08 |
c2 | 219 | 224.0 | 1061.39 | 2.28 | 219 | 226.0 | 1099.06 | 3.2 | 219 | 474.0 | 737.55 | 116.44 | 219 | 1654.0 | 1779.23 | 655.25 | 219 | 234 | 238.83 | 6.85 | 219 | 229 | 232.3 | 4.57 |
c3 | 243 | 252.0 | 1560.45 | 3.7 | 243 | 248.0 | 1298.35 | 2.06 | 243 | 629.0 | 919.1 | 158.85 | 243 | 1970.0 | 2126.94 | 710.7 | 243 | 258 | 260.83 | 6.17 | 243 | 249 | 254.2 | 2.47 |
c4 | 219 | 226.0 | 1105.35 | 3.2 | 219 | 225.0 | 1148.52 | 2.74 | 219 | 570.0 | 769.13 | 160.27 | 219 | 1582.0 | 1734.13 | 622.37 | 219 | 232 | 233.83 | 5.94 | 219 | 227 | 229.0 | 3.65 |
c5 | 215 | 220.0 | 894.19 | 2.33 | 215 | 221.0 | 918.71 | 2.79 | 215 | 496.0 | 754.65 | 130.7 | 215 | 1541.0 | 1686.84 | 616.74 | 215 | 229 | 231.33 | 6.51 | 215 | 221 | 225.4 | 2.79 |
d1 | 60 | 60.0 | 918.32 | 0.0 | 60 | 61.0 | 951.23 | 1.67 | 60 | 419.0 | 801.39 | 598.33 | 60 | 1950.0 | 2080.39 | 3150.0 | 60 | 63 | 64.97 | 5.0 | 60 | 61 | 62.3 | 1.67 |
d2 | 66 | 66.0 | 1271.84 | 0.0 | 66 | 67.0 | 799.77 | 1.52 | 66 | 480.0 | 806.1 | 627.27 | 66 | 2261.0 | 2333.68 | 3325.76 | 66 | 68 | 69.0 | 3.03 | 66 | 67 | 67.4 | 1.52 |
d3 | 72 | 73.0 | 647.81 | 1.39 | 72 | 72.0 | 1528.39 | 0.0 | 72 | 506.0 | 880.23 | 602.78 | 72 | 2445.0 | 2581.48 | 3295.83 | 72 | 76 | 77.33 | 5.56 | 72 | 73 | 74.8 | 1.39 |
d4 | 62 | 62.0 | 1464.52 | 0.0 | 62 | 62.0 | 1201.81 | 0.0 | 62 | 312.0 | 755.48 | 403.23 | 62 | 2025.0 | 2107.97 | 3166.13 | 62 | 62 | 63.4 | 0.0 | 62 | 62 | 62.2 | 0.0 |
d5 | 61 | 61.0 | 750.81 | 0.0 | 61 | 61.0 | 1044.03 | 0.0 | 61 | 344.0 | 792.87 | 463.93 | 61 | 1930.0 | 2093.29 | 3063.93 | 61 | 63 | 64.33 | 3.28 | 61 | 61 | 62.6 | 0.0 |
Average | - | 257.33 | 784.68 | 1.21 | - | 257.73 | 782.6 | 1.36 | - | 463.07 | 653.83 | 152.83 | - | 1176.27 | 1280.82 | 778.69 | - | 264.93 | 267.99 | 4.27 | - | 258.76 | 262.44 | 1.73 |
QBWOA | BSWOA | BCL | MIR | 40BQWOA | 40BSWOA | |
---|---|---|---|---|---|---|
QBWOA | - | ≥0.05 | ≥0.05 | 0.00 | ≥0.05 | ≥0.05 |
BSWOA | ≥0.05 | - | ≥0.05 | 0.00 | ≥0.05 | ≥0.05 |
BCL | ≥0.05 | ≥0.05 | - | 0.00 | ≥0.05 | ≥0.05 |
MIR | ≥0.05 | ≥0.05 | ≥0.05 | - | ≥0.05 | ≥0.05 |
40BQWOA | ≥0.05 | ≥0.05 | ≥0.05 | 0.01 | - | ≥0.05 |
40BSWOA | ≥0.05 | ≥0.05 | ≥0.05 | 0.00 | ≥0.05 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerra-Rozas, M.; Cisternas-Caneo, F.; Crawford, B.; Soto, R.; García, J.; Astorga, G.; Palma, W. Embedded Learning Approaches in the Whale Optimizer to Solve Coverage Combinatorial Problems. Mathematics 2022, 10, 4529. https://doi.org/10.3390/math10234529
Becerra-Rozas M, Cisternas-Caneo F, Crawford B, Soto R, García J, Astorga G, Palma W. Embedded Learning Approaches in the Whale Optimizer to Solve Coverage Combinatorial Problems. Mathematics. 2022; 10(23):4529. https://doi.org/10.3390/math10234529
Chicago/Turabian StyleBecerra-Rozas, Marcelo, Felipe Cisternas-Caneo, Broderick Crawford, Ricardo Soto, José García, Gino Astorga, and Wenceslao Palma. 2022. "Embedded Learning Approaches in the Whale Optimizer to Solve Coverage Combinatorial Problems" Mathematics 10, no. 23: 4529. https://doi.org/10.3390/math10234529
APA StyleBecerra-Rozas, M., Cisternas-Caneo, F., Crawford, B., Soto, R., García, J., Astorga, G., & Palma, W. (2022). Embedded Learning Approaches in the Whale Optimizer to Solve Coverage Combinatorial Problems. Mathematics, 10(23), 4529. https://doi.org/10.3390/math10234529