On Discrete Approximation of Analytic Functions by Shifts of the Lerch Zeta Function
Abstract
:1. Introduction
2. Mean Square Estimate
3. Probabilistic Results
4. Proof of Theorem 5
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lerch, M. Note sur la fonction K(w,x,s)=∑n⩾0exp{2πinx}(n+w)-s. Acta Math. 1887, 11, 19–24. [Google Scholar] [CrossRef]
- Lipschitz, R. Untersuchung einer aus vier Elementen gebildeten Reihe. J. Reine Angew. Math. 1889, 105, 127–156. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Garunkštis, R. The Lerch Zeta Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2002. [Google Scholar]
- Voronin, S.M. Theorem on the “universality” of the Riemann zeta function. Math. USSR Izv. 1975, 9, 443–453. [Google Scholar] [CrossRef]
- Voronin, S.M. Analytic Properties of Arithmetic Objects. Ph.D. Thesis, V.A. Steklov Math. Inst., Moscow, Russia, 1977. [Google Scholar]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann zeta function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
- Balčiūnas, A.; Dubickas, A.; Laurinčikas, A. On the Hurwitz zeta function with algebraic irrational parameter. Math. Notes 2019, 105, 173–179. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Šiaučiūnas, D.; Vadeikis, G. Weighted discrete universality of the Riemann zeta function. Math. Modell. Anal. 2020, 25, 21–36. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Šiaučiūnas, D.; Vadeikis, G. A weighted version of the Mishou theorem. Math. Modell. Anal. 2021, 26, 21–33. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Vadeikis, G. Joint weighted universality of the Hurwitz zeta functions. St. Petersburg Math. J. 2022, 33, 511–522. [Google Scholar] [CrossRef]
- Sander, J.; Steuding, J. Joint universality for Euler products of Dirichlet L-functions. Analysis 2006, 26, 295–312. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R. The discrete universality of the periodic Hurwitz zeta function. Integral Transform. Spec. Funct. 2009, 20, 673–686. [Google Scholar] [CrossRef]
- Laurinčikas, A. A discrete universality of the Hurwitz zeta function. J. Number Theory 2014, 43, 232–247. [Google Scholar] [CrossRef]
- Laurinčikas, A. On the Hurwitz zeta function with algebraic irrational parameter. II. Proc. Steklov Inst. Math. 2021, 314, 127–137. [Google Scholar] [CrossRef]
- Franckevič, V.; Laurinčikas, A.; Šiaučiūnas, D. On joint value distribution of Hurwitz zeta functions. Chebyshevskii Sb. 2018, 19, 219–230. [Google Scholar]
- Balčiūnas, A.; Garbaliauskienė, V.; Lukšienė, V.; Macaitienė, R.; Rimkevičienė, A. Joint discrete approximation of analytic functions by Hurwitz zeta functions. Math. Modell. Anal. 2022, 27, 88–100. [Google Scholar] [CrossRef]
- Sourmelidis, A.; Steuding, J. On the value distribution of Hurwitz zeta function with algebraic irrational parameter. Constr. Approx. 2022, 55, 829–860. [Google Scholar] [CrossRef]
- Laurinčikas, A. Distribution modulo 1 and universality of the Hurwitz zeta function. J. Number Theory 2016, 167, 293–303. [Google Scholar] [CrossRef]
- Laurinčikas, A. On discrete universality universality of the Hurwitz zeta function. Results Math. 2017, 72, 907–917. [Google Scholar] [CrossRef]
- Mishou, H. The joint value distribution of the Riemann zeta function and Hurwitz zeta functions. Lith. Math. J. 2007, 47, 32–47. [Google Scholar] [CrossRef]
- Buivydas, E.; Laurinčikas, A. A discrete version of the Mishou theorem. Ramanujan J. 2015, 38, 331–347. [Google Scholar] [CrossRef]
- Laurinčikas, A. On joint universality of the Riemann zeta functionand Hurwitz zeta functions. J. Number Theory 2012, 132, 2842–2853. [Google Scholar] [CrossRef] [Green Version]
- Laurinčikas, A. The universality of the Lerch zeta function. Lith. Math. J. 1997, 37, 275–280. [Google Scholar] [CrossRef]
- Garunkštis, R.; Laurinčikas, A. The Lerch zeta function. Integral Transform. Spec. Funct. 2000, 10, 211–226. [Google Scholar] [CrossRef]
- Laurinčikas, A. On universality of the Lerch zeta function. Proc. Steklov Inst. Math. 2012, 276, 167–175. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Macaitienė, R.; Mochov, D.; Šiaučiūnas, D. Universality of the periodic Hurwitz zeta function with rational parameter. Sib. Math. J. 2018, 59, 894–900. [Google Scholar] [CrossRef]
- Nakamura, T. The existence and the non-existence of joint t-universality for Lerch zeta functions. J. Number Theory 2007, 125, 424–441. [Google Scholar] [CrossRef] [Green Version]
- Mishou, H. Functional distribution for a collection of Lerch zeta functions. J. Math. Soc. Jpn. 2014, 66, 1105–1126. [Google Scholar] [CrossRef]
- Nakamura, T. Applications of inversion formulas to the joint t-universality of Lerch zeta functions. J. Number Theory 2007, 123, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Laurinčikas, A. The joint universality of Lerch zeta functions. Math. Notes 2010, 88, 386–394. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Matsumoto, K. The joint universality and the functional independence for Lerch zeta functions. Nagoya Math. J. 2000, 157, 211–227. [Google Scholar] [CrossRef] [Green Version]
- Laurinčikas, A. “Almost” universality of the Lerch zeta function. Math. Commun. 2019, 24, 107–118. [Google Scholar]
- Bitar, K.M.; Khuri, N.N.; Ren, H.C. Path integrals and Voronin’s theorem on the universality of the Riemann zeta function. Ann. Phys. 1991, 211, 172–196. [Google Scholar] [CrossRef] [Green Version]
- Gutzwiller, M.C. Stochastic behavior in quantum scattering. Physica 1983, 7D, 341–355. [Google Scholar] [CrossRef]
- Mauclaire, J.-L. Universality of the Riemann zeta function: Two remarks. Annales Univ. Sci. Budapest. Sect. Comp. 2013, 39, 311–319. [Google Scholar]
- Laurinčikas, A.; Meška, L. Sharpening of the universality inequality. Math. Notes 2014, 96, 971–976. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Meška, L. On the modification of the universality of the Hurwitz zeta function. Nonlinear Anal. Model. Control 2016, 21, 564–576. [Google Scholar] [CrossRef]
- Montgomery, H.L. Topics in Multiplicative Number Theory; Lecture Notes Math.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971; Volume 227. [Google Scholar]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimkevičienė, A.; Šiaučiūnas, D. On Discrete Approximation of Analytic Functions by Shifts of the Lerch Zeta Function. Mathematics 2022, 10, 4650. https://doi.org/10.3390/math10244650
Rimkevičienė A, Šiaučiūnas D. On Discrete Approximation of Analytic Functions by Shifts of the Lerch Zeta Function. Mathematics. 2022; 10(24):4650. https://doi.org/10.3390/math10244650
Chicago/Turabian StyleRimkevičienė, Audronė, and Darius Šiaučiūnas. 2022. "On Discrete Approximation of Analytic Functions by Shifts of the Lerch Zeta Function" Mathematics 10, no. 24: 4650. https://doi.org/10.3390/math10244650
APA StyleRimkevičienė, A., & Šiaučiūnas, D. (2022). On Discrete Approximation of Analytic Functions by Shifts of the Lerch Zeta Function. Mathematics, 10(24), 4650. https://doi.org/10.3390/math10244650