Robust Switching Regressions Using the Laplace Distribution
Abstract
:1. Introduction
2. Robust Algorithms for Switching Regression Models
2.1. Robust EML Algorithm
- (1)
- Given an initial parameter estimate at the (j + 1)th iteration, we execute the following two steps.
- (2)
- E step: Compute and by Equations (7) and (8).
- (3)
- M-step: Update parameter estimates
- (4)
- Repeat steps (2) and (3) until convergence is obtained.
2.2. Robust FCL Algorithm
- (1)
- Given the initial value of , , we compute by (12), where
- (2)
- Compute , , , , by (15)–(17).
- (3)
- Update with , by (18) and (19).
- (4)
- Update and by (12) and (8).
- (5)
- Repeat steps (2)–(4) until convergence is obtained.
2.3. The Robustness and Advancement of FCL
3. Experiments and Applications
3.1. Simulation Study
- EMN: EM algorithm with normally distributed errors [44],
- FCN: FCML algorithm with normally distributed errors [44],
- RSE: Rank-based segmented method [26],
- EM-t: EM robust algorithm using Tukey’s biweight function [24],
- EML: The proposed EML algorithm,
- FCL: The proposed FCL algorithm,
- FCT1: FCML algorithm with t distributed errors and the degrees of freedom equal to 1 [31].
3.2. Sensitivity Study with a Real Dataset
3.3. Real Applications
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
- 1.
- Y has a Laplace distribution with mean 0 and scale parameter b, i.e., Y has the density
- 2.
- The posterior distribution of V given Y = y has a mean
References
- Muggeo, V.M.R. Segmented: An R package to fit regression models with broken-line relationships. R News 2008, 8, 20–25. [Google Scholar]
- MacNeill, I.B.; Mao, Y. Change-point analysis for mortality and morbidity rate. In Applied Change Point Problems in Statistics; Sinha, B., Rukhin, A., Ahsanullah, M., Eds.; Nova Science: Hauppauge, NY, USA, 1995; pp. 37–55. [Google Scholar]
- Korkas, K.K.; Fryzlewicz, P. Multiple change-point detection for non-stationary time series using wild binary segmen-tation. Statisca Sin. 2017, 27, 287–311. [Google Scholar]
- Werner, R.; Valev, D.; Danov, D.; Guineva, V. Study of structural break points in global and hemispheric temperature series by piecewise regression. Adv. Space Res. 2015, 56, 2323–2334. [Google Scholar] [CrossRef]
- Toms, J.D.; Villard, M.-A. Threshold detection: Matching statistical methodology to ecological questions and conservation planning objectives. Avian Conserv. Ecol. 2015, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Fryzlewicz, P. Wild binary segmentation for multiple change-point detection. Ann. Stat. 2014, 42, 2243–2281. [Google Scholar] [CrossRef]
- Korkas, K.K. Ensemble binary segmentation for irregularly spaced data with change-points. J. Korean Stat. Soc. 2022, 51, 65–86. [Google Scholar] [CrossRef]
- Frick, K.; Munk, A.; Sieling, H. Multiscale change point inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 2014, 76, 495–580. [Google Scholar] [CrossRef] [Green Version]
- Pein, F.; Sieling, H.; Munk, A. Heterogeneuous change point inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 2017, 79, 1207–1227. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Yin, G.; Feng, L.; Wang, Z. Nonparametric maximum likelihood approach to multiple change-point problems. Ann. Stat. 2014, 42, 970–1002. [Google Scholar] [CrossRef] [Green Version]
- Haynes, K.; Fearnhead, P.; Eckley, I.A. A computationally efficient nonparametric approach for changepoint detection. Stat. Comput. 2017, 27, 1293–1305. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Sakate, D.; Mathur, S. A nonparametric procedure for changepoint detection in linear regression. Commun. Stat.-Theory Methods 2021, 50, 1925–1935. [Google Scholar] [CrossRef]
- Romano, G.; Rigaill, G.; Runge, V.; Fearnhead, P. Detecting Abrupt Changes in the Presence of Local Fluctuations and Autocorrelated Noise. J. Am. Stat. Assoc. 2021, 1–16. [Google Scholar] [CrossRef]
- Chakar, S.; Lebarbier, E.; Lévy-Leduc, C.; Robin, S. A robust approach for estimating change-points in the mean of an AR(1) process. Bernoulli 2017, 23, 1408–1447. [Google Scholar] [CrossRef]
- Fryzlewicz, P.; Rao, S.S. Multiple-change-point detection for auto-regressive conditional heteroscedastic processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 2014, 76, 903–924. [Google Scholar] [CrossRef]
- Killick, R.; Fearnhead, P.; Eckley, I.A. Optimal detection of change points with a linear computational cost. J. Am. Stat. Assoc. 2012, 107, 1590–1598. [Google Scholar] [CrossRef]
- Maidstone, R.; Hocking, T.; Rigaill, G.; Fearnhead, P. On optimal multiple changepoint algorithms for large data. Stat. Comput. 2017, 27, 519–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tickle, S.O.; Eckley, I.A.; Fearnhead, P.; Haynes, K. Parallelization of a Common Changepoint Detection Method. J. Comput. Graph. Stat. 2020, 29, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Fearnhead, P.; Rigaill, G. Changepoint Detection in the Presence of Outliers. J. Am. Stat. Assoc. 2019, 114, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Aminikhanghahi, S.; Cook, D.J. A survey of methods for time series change point detection. Knowl. Inf. Syst. 2017, 51, 339–367. [Google Scholar] [CrossRef] [Green Version]
- Maier, C.; Loos, C.; Hasenauer, J. Robust parameter estimation for dynamical systems from outlier-corrupted data. Bioinformatics 2017, 33, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, C.C. Outlier analysis. In DataMining; Springer: New York, NY, USA, 2015. [Google Scholar]
- Peel, D.; McLachlan, G. Robust mixture modelling using the t distribution. Stat. Comput. 2000, 10, 339–348. [Google Scholar] [CrossRef]
- Lu, K.-P.; Chang, S.-T. Robust algorithms for multiphase regression models. Appl. Math. Model. 2020, 77, 1643–1661. [Google Scholar] [CrossRef]
- Zhang, F.; Li, Q. Robust bent line regression. J. Stat. Plan. Inference 2017, 185, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Li, Y.; Wan, C. Robust continuous piecewise linear regression model with multiple change points. J. Supercomput. 2018, 76, 3623–3645. [Google Scholar] [CrossRef]
- Gerstenberger, C. Robust Wilcoxon-type estimation of change-point location under short range dependence. J. Time Ser. Anal. 2018, 39, 90–104. [Google Scholar] [CrossRef]
- Yao, W.; Wei, Y.; Yu, C. Robust mixture regression using the t-distribution. Comput. Stat. Data Anal. 2014, 71, 116–127. [Google Scholar] [CrossRef]
- Osorio, F.; Galea, M. Detection of a change-point in student-t linear regression models. Stat. Pap. 2005, 47, 31–48. [Google Scholar] [CrossRef]
- Lin, J.-G.; Chen, J.; Li, Y. Bayesian Analysis of Student t Linear Regression with Unknown Change-Point and Application to Stock Data Analysis. Comput. Econ. 2012, 40, 203–217. [Google Scholar] [CrossRef]
- Lu, K.-P.; Chang, S.-T. Robust Algorithms for Change-Point Regressions Using the t-Distribution. Mathematics 2021, 9, 2394. [Google Scholar] [CrossRef]
- Bai, J. Estimation of multiple-regime regressions with least absolutes deviation. J. Stat. Plan. Inference 1998, 74, 103–134. [Google Scholar] [CrossRef] [Green Version]
- Ciuperca, G. Estimating nonlinear regression with and without change-points by the LAD method. Ann. Inst. Stat. Math. 2011, 63, 717–743. [Google Scholar] [CrossRef]
- Ciuperca, G. Penalized least absolute deviations estimation for nonlinear model with change-points. Stat. Pap. 2011, 52, 371–390. [Google Scholar] [CrossRef]
- Kozubowski, T.J.; Nadarajah, S. Multitude of Laplace distributions. Stat. Pap. 2010, 51, 127–148. [Google Scholar] [CrossRef]
- Yavuz, F.G.; Arslan, O. Linear mixed model with Laplace distribution (LLMM). Stat. Pap. 2016, 59, 271–289. [Google Scholar] [CrossRef]
- Nguyen, H.D.; McLachlan, G.J. Laplace mixture of linear experts. Comput. Stat. Data Anal. 2016, 93, 177–191. [Google Scholar] [CrossRef]
- Franczak, B.C.; Browne, R.P.; McNicholas, P.D. Mixtures of shifted asymmetric Laplace distributions. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 1149–1157. [Google Scholar] [CrossRef] [Green Version]
- Bhowmick, D.; Davison, A.; Goldstein, D.R.; Ruffieux, Y. A Laplace mixture model for identification of differential expression in microarray experiments. Biostatistics 2006, 7, 630–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, W.; Yao, W.; Xing, Y. Robust mixture regression model fitting by Laplace distribution. Comput. Stat. Data Anal. 2014, 71, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Yang, F. Robust Mean Change-Point Detecting through Laplace Linear Regression Using EM Algorithm. J. Appl. Math. 2014, 2014, 856350. [Google Scholar] [CrossRef] [Green Version]
- Jafari, A.; Yarmohammadi, M.; Rasekhi, A. Bayesian analysis to detect change-point in two-phase Laplace model. Sci. Res. Essays 2016, 11, 187–193. [Google Scholar]
- McLanchlan, G.; Peel, D. Finite Mixture Models; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Lu, K.-P.; Chang, S.-T. A fuzzy classification approach to piecewise regression models. Appl. Soft Comput. 2018, 69, 671–688. [Google Scholar] [CrossRef]
- Yang, M.-S. A survey of fuzzy clustering. Math. Comput. Model. 1993, 18, 1–16. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Leroy, A.M. Robust Regression and Outlier Detection; Wiley-Interscience: New York, NY, USA, 1987. [Google Scholar]
- Rousseeuw, P.J.; Van Driessen, K. A fast algorithm for the minimum covariance determinant estimator. Technometrics 1999, 41, 212–223. [Google Scholar] [CrossRef]
- Davison, A.; Hinkley, D. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- D’Urso, P.; Massari, R.; Santoro, A. Robust fuzzy regression analysis. Inf. Sci. 2011, 181, 4154–4174. [Google Scholar] [CrossRef]
- Maronna, R.A.; Martin, R.D.; Yohai, V.J. Robust Statistics: Theory and Methods; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Garland, T. The relation between maximal running speed and body mass in terrestrial mammals. J. Zool. 1983, 199, 157–170. [Google Scholar] [CrossRef]
- McMahon, T.A. Using body size to understand the structural design of animals: Quadrupedal locomotion. J. Appl. Physiol. 1975, 39, 619–627. [Google Scholar] [CrossRef]
- Chiodi, F.; Claudin, P.; Andreotti, B. A two-phase flow model of sediment transport: Transition from bedload to suspended load. J. Fluid Mech. 2014, 755, 561–581. [Google Scholar] [CrossRef] [Green Version]
- Clark, T. Is the Great Moderation over? An empirical analysis. Fed. Reserve Bank Kansas City Econ. Rev. 2009, 94, 5–42. [Google Scholar]
- Bernstein, E. Reflections on Bretton Woods, The International Monetary System: Forty Years after Bretton Woods; Federal Reserve Bank of Boston: Boston, MA, USA, 1984. [Google Scholar]
- Hawkins, D.M. Fitting multiple change-point models to data. Comput. Stat. Data Anal. 2001, 37, 323–341. [Google Scholar] [CrossRef]
- Ciuperca, G. A general criterion to determine the number of change-points. Stat. Probab. Lett. 2011, 81, 1267–1275. [Google Scholar] [CrossRef]
(a) | MSE-SP | SER-Beta | Iteration Time (in Seconds) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a1 | a2 | a3 | a4 | a5 | a1 | a2 | a3 | a4 | a5 | a1 | a2 | a3 | a4 | a5 | |
EMN | 0.72 | 27.0 | 544 | 567 | 3.01 | 0.49 | 2.22 | x 1 | x | 10.4 | 1.70 | 5.58 | 2.81 | 3.02 | 2.52 |
FCN | 0.01 | 21.7 | 0.09 | 114 | 0.62 | 0.72 | 2.75 | 9.31 | x | 0.80 | 3.77 | 2.59 | 1.38 | 1.69 | 1.17 |
RSE | 37.8 | 165 | 61.5 | 3.99 | 39.6 | x | x | x | x | 18.0 | 6.08 | 10.4 | 69.6 | 103 | 3.83 |
EM-t | 0.29 | 143 | 2.16 | 8.86 | 0.33 | 0.43 | 0.60 | 0.73 | x | 0.77 | 2.22 | 3.25 | 2.86 | 7.58 | 2.25 |
EML | 1.42 | 0.02 | 0.39 | 625 | 2.48 | 0.53 | 0.93 | 0.63 | x | 0.68 | 1.28 | 2.02 | 1.30 | 0.70 | 1.66 |
FCL | 0.28 | 0.06 | 0.38 | 0.29 2 | 0.44 | 0.45 | 1.20 | 0.66 | 0.60 2 | 0.47 | 4.66 | 5.86 | 5.28 | 4.19 2 | 5.09 |
FCT1 | 0.43 | 0.06 | 0.22 | 0.352 | 0.30 | 0.76 | 0.65 | 0.66 | 0.91 2 | 0.52 | 6.14 | 6.41 | 5.27 | 6.66 2 | 6.44 |
(b) | MSE-SP | SER-Beta | Iteration Time (in Seconds) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
b1 | b2 | b3 | b4 | b5 | b1 | b2 | b3 | b4 | b5 | b1 | b2 | b3 | b4 | b5 | |
EMN | 0.01 | 26.8 | 2.70 | 21.4 | 0.04 | 0.01 | 26.8 | 2.70 | 21.4 | 0.04 | 0.58 | 4.85 | 7.88 | 26.8 | x 1 |
FCN | 0.01 | 20.0 | 4.57 | 9.20 | 0.06 | 0.01 | 20.0 | 4.57 | 9.20 | 0.06 | 0.60 | 3.28 | 13.6 | 27.8 | 3.42 |
RSE | 0.00 | 0.71 | 1.67 | 0.00 | 0.01 | 0.00 | 0.12 | 0.13 | 51.7 | 0.00 | 0.62 | 0.63 | 0.68 | x 1 | 1.74 |
EM-t | 0.00 | 0.12 | 0.13 | 51.7 | 0.00 | 0.01 | 7.73 | 0.03 | 23.5 | 0.04 | 0.60 | 0.64 | 0.56 | 26.8 | 2.83 |
EML | 0.01 | 11.8 | 0.19 | 625 | 0.04 | 0.01 | 5.21 | 0.68 | 29.5 | 0.11 | 0.61 | 1.11 | 2.01 | 27.4 | 1.87 |
FCL | 0.01 | 7.73 | 0.03 | 23.5 2 | 0.04 | 0.00 | 1.02 | 0.01 | 0.00 2 | 0.01 | 0.48 | 0.63 | 1.53 | 0.61 2 | 1.23 |
FCT1 | 0.01 | 5.21 | 0.68 | 29.5 2 | 0.11 | 0.01 | 0.13 | 0.01 | 0.01 2 | 0.01 | 0.75 | 0.72 | 0.74 | 1.00 2 | 1.07 |
Original Data | Trimmed Data | ||||||
---|---|---|---|---|---|---|---|
SP | Beta 1 | Beta 2 | SP | Beta 1 | Beta 2 | ||
FCN | 1 | (−0.0057, 0.0130), (−0.0348, 0.0363) | FCNtr | 71 | (−0.0078, 0.0151), (−0.0145, 0.0209) | ||
EML | 74 | (−0.0087, 0.0167), (−0.1756, 0.1154) | EMLtr | 69 | (−0.0093, 0.0168), (0.24181,-0.1250) | ||
FCL | 74 | (−0.0070, 0.0147), (−0.1185, 0.0845) | FCLtr | 62 (1.54858) | (−0.00788, 0.0152), (−0.0154, 0.0215) | ||
FCT1 | 62 | (−0.0057, 0.0131), (−0.0354, 0.0366) | FCT1tr | 62 (1.54858) | (−0.0078, 0.0151), (−0.01450, 0.0209) |
Try | 0 SPs c = 1, 15 Noises | 1 SP c = 2, 15 Noises | 2 SPs c = 3, 10 Noises | 3 SPs c = 4, 10 Noises | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
c | RSS 1 | lnL 1 | MSE 1 | BIC | RSS | −lnL | MSE | BIC | RSS | −lnL | MSE | BIC | RSS | −lnL | MSE | BIC |
1 | x 2 | x | x | 103 3 | x | x | x | 88 | x | x | x | −10 | x | x | x | 90 |
2 | −9 | 144 | −0.57 | 121 | 91 | 41 | 1.76 | 76 | 13 | 19 | 0.22 | −9 | 189 | 270 | 3.85 | 34 |
3 | 10 | 8 | −0.02 | 152 | 9 | −2 | 0.04 | 106 | 8 | −1 | 0.11 | 15 | 33 | 30 | 0.67 | 35 |
4 | 1 | 13 | −0.35 | 201 | −15,992 | −67,641 | −380 | 459 | 5 | 15 | 0.07 | 60 | 8 | 21 | 0.13 | 73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.-P.; Chang, S.-T. Robust Switching Regressions Using the Laplace Distribution. Mathematics 2022, 10, 4722. https://doi.org/10.3390/math10244722
Lu K-P, Chang S-T. Robust Switching Regressions Using the Laplace Distribution. Mathematics. 2022; 10(24):4722. https://doi.org/10.3390/math10244722
Chicago/Turabian StyleLu, Kang-Ping, and Shao-Tung Chang. 2022. "Robust Switching Regressions Using the Laplace Distribution" Mathematics 10, no. 24: 4722. https://doi.org/10.3390/math10244722
APA StyleLu, K.-P., & Chang, S.-T. (2022). Robust Switching Regressions Using the Laplace Distribution. Mathematics, 10(24), 4722. https://doi.org/10.3390/math10244722