Resource Retrial Queue with Two Orbits and Negative Customers
Abstract
:1. Introduction
- a negative arrival eliminates all the customers in the system or in its part, e.g., under the service or in the buffer (catastrophes);
- a negative arrival removes a customer from the system, e.g., from the server, from the head of the queue, or its end;
- a negative arrival breaks the service device, etc.
2. Mathematical Model
- the negative customer arrival with intensity , so the number of customers from both types being serviced becomes equal to 0 (transitions and );
- the first type arrival with intensity :
- -
- if there is a sufficient resource amount for the customer, it gets serviced; therefore, the number of customers of the first type being serviced increases by 1 (transitions and );
- -
- otherwise, the customer goes to the orbit and waits for the retrial; therefore, the number of customers in the first orbit increases by 1 (transitions and );
- the end of first type customer service with an intensity ; therefore, the number of customers of the first type being serviced is reduced by 1 (transitions and );
- the successful retrial to service of the first type customer with an intensity ; therefore, the number of customers in the first orbit is reduced by 1, and the number of customers of the first type being serviced is reduced by 1 (transitions and );
- similarly, we have transitions for the second type customers.
- (a)
- For
- (b)
- For
- (c)
- For
- (d)
- For
- (e)
- For
- (a)
- For
- (b)
- For
- (c)
- For
- (d)
- For
- (e)
- For
3. Asymptotic Analysis Method
- 1.
- Deriving of the asymptotic mean of the considered process:
- (a)
- introducing of an infinitesimal parameter and an asymptotic function notation (5);
- (b)
- (c)
- deriving of a limit solution of the asymptotic equations for ;
- (d)
- using the inverse substitutions, we obtain the form of the first-order asymptotic characteristic function (10), which gives the value of the asymptotic mean of the considered process.
- 2.
- Deriving of the asymptotic variance of the considered process:
- (a)
- using the result of the first-order asymptotic analysis 1.(d), we rewrite the characteristic function as (11);
- (b)
- (c)
- introducing of an infinitesimal parameter and new asymptotic function notation (13);
- (d)
- rewriting of equations obtained in 2.(b) for the asymptotic notations;
- (e)
- approximating asymptotic functions by its 2th-degree Maclaurin series with respect to as (14);
- (f)
- deriving of a limit solution of the asymptotic equations for ;
- (g)
- using the inverse substitutions, we obtain the form of the second-order asymptotic characteristic function, which gives the value of the asymptotic variance of the considered process.
- 3.
- Combining the results of 1.(d) and 2.(g), we obtain the final form of asymptotic characteristic function (21).
3.1. First-Order Asymptotics
3.2. Second-Order Asymptotics
4. Numerical Examples
- the arrival of the first customer,
- the arrival of the second customer,
- the arrival of the negative customer,
- the service end of the first customer,
- the service end of the second customer,
- the customer attempt to access the service unit from the first orbit, and
- the customer attempt to access the service unit from the second orbit.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dudin, A.N.; Klimenok, V.I.; Vishnevsky, V.M. The Theory of Queuing Systems with Correlated Flows; Springer: Berlin/Heidelberg, Germany, 2020; 410p. [Google Scholar]
- Lakatos, L.; Szeidl, L.; Miklos, T. Introduction to Queueing Systems with Telecommunication Applications; Springer: Boston, MA, USA, 2013; 388p. [Google Scholar]
- Bocharov, P.; D’Apice, C.; Pechinkin, A.; Salerno, S. Queueing Theory; VSP: Utrecht, The Netherlands; Boston, MA, USA, 2004; 446p. [Google Scholar]
- Artalejo, J.R.; Gomez-Corral, A. Retrial Queueing Systems: A Computational Approach; Springer: Berlin/Heidelberg, Germany, 2008; 318p. [Google Scholar]
- Falin, G.I.; Templeton, J.G.C. Retrial Queues; Chapman and Hall: London, UK, 1997; 328p. [Google Scholar]
- Gelenbe, E. Product form networks with negative and positive customers. J. Appl. Prob. 1991, 28, 656–663. [Google Scholar] [CrossRef]
- Gelenbe, E. Harrison, P.; Pitel, E. The M/G/1 queue with negative customers. Adv. Appl. Probab. 1996, 28, 540–566. [Google Scholar]
- Bocharov, P.P.; Vishnevskii, V.M. G-Networks: Development of the theory of multiplicative networks. Automat. Rem. Control 2003, 64, 46–74. [Google Scholar]
- Chao, X.; Xiu, L.; Masakiyo, M.; Michael, P. Queueing Networks: Customers, Signals and Product Form Solutions; Wiley: Hoboken, NJ, USA, 1999; 464p. [Google Scholar]
- Matalytsky, M.; Zajac, P. Application of HM-network with positive and negative claims for finding of memory volumes in information systems. Appl. Math. Comput. Mech. 2019, 18, 41–51. [Google Scholar] [CrossRef]
- Do, T.V. Bibliography on G-networks, negative customers and applications. Math. Comput. Model. 2011, 53, 205–212. [Google Scholar] [CrossRef]
- Anisimov, V.; Artalejo, J.R. Analysis of Markov multiserver retrial queues with negative arrivals. Queueing Syst. 2001, 39, 157–182. [Google Scholar] [CrossRef]
- Shin, Y.W. Multi-server retrial queue with negative customers and disasters. Queueing Syst. 2007, 55, 223–237. [Google Scholar] [CrossRef]
- Kirupa, K.; Chandrika, K. Unreliable Batch Arrival Retrial Queue with Negative Arrivals, Multi-Types Of Heterogeneous Service, Feedback and Randomized J Vacations. Int. J. Comput. Appl. 2015, 127, 38–42. [Google Scholar]
- Fedorova, E.A.; Nazarov, A.A.; Farkhadov, M.P. Asymptotic Analysis of the MMPP/M/1 Retrial Queue with Negative Calls under the Heavy Load Condition. Izv. Saratov Univ. Math. Mech. Inform. 2020, 20, 534–547. [Google Scholar] [CrossRef]
- Dudin, A.; Dudina, O.; Dudin, S.; Samouylov, K. Analysis of Single-Server Multi-Class Queue with Unreliable Service, Batch Correlated Arrivals, Customers Impatience, and Dynamical Change of Priorities. Mathematics 2021, 9, 1257. [Google Scholar] [CrossRef]
- Atencia, I.; Galán-García, J.L. Sojourn Times in a Queueing System with Breakdowns and General Retrial Times. Mathematics 2021, 9, 2882. [Google Scholar] [CrossRef]
- Melikov, A.; Aliyeva, S.; Sztrik, J. Retrial Queues with Unreliable Servers and Delayed Feedback. Mathematics 2021, 9, 2415. [Google Scholar] [CrossRef]
- Nazarov, A.; Phung-Duc, T.; Paul, S.; Lizyura, O.; Shulgina, K. Central Limit Theorem for an M/M/1/1 Retrial Queue with Unreliable Server and Two-Way Communication. In Information Technologies and Mathematical Modelling. Queueing Theory and Applications. ITMM 2020. Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1391, pp. 120–130. [Google Scholar]
- Tikhonenko, O.; Ziółkowski, M. Queueing systems with non–homogeneous customers and infinite sectorized memory space. Commun. Comput. Inf. Sci. 2019, 1039, 316–329. [Google Scholar]
- Tikhonenko, O.; Ziółkowski, M. Queueing Systems with Random Volume Customers and their Performance Characteristics. JIOS 2021, 45, 21–38. [Google Scholar] [CrossRef]
- Naumov, V.; Samouylov, K. Resource System with Losses in a Random Environment. Mathematics 2021, 9, 2685. [Google Scholar] [CrossRef]
- Naumov, V.; Samuilov, K. Analysis of networks of the resource queuing systems. Autom. Remote. 2018, 79, 822–829. [Google Scholar] [CrossRef]
- Efrosinin, D. Stepanova, N. Sztrik, J. Algorithmic Analysis of Finite-Source Multi-Server Heterogeneous Queueing Systems. Mathematics 2021, 9, 2624. [Google Scholar] [CrossRef]
- Lisovskaya, E.; Pankratova, E.; Moiseeva, S.; Pagano, M. Analysis of a Resource-Based Queue with the Parallel Service and Renewal Arrivals, Lecture Notes in Computer Science. Distrib. Comput. Commun. Netw. 2020, 12563, 335–349. [Google Scholar]
- Bushkova, T.; Moiseeva, S.; Moiseev, A.; Sztrik, J.; Lisovskaya, E.; Pankratova, E. Using Infinite-server Resource Queue with Splitting of Requests for Modeling Two-channel Data Transmission. Methodol. Comput. Appl. Probab. 2021, 1–20. [Google Scholar] [CrossRef]
- Bushkova, T.; Galileyskaya, A.; Lisovskaya, E.; Pankratova, E.; Moiseeva, S. Multi-service resource queue with the multy-component Poisson arrivals. Glob. Stoch. Anal. 2021, 8, 97–109. [Google Scholar]
- Moskaleva, F.; Lisovskaya, E.; Gaidamaka, Y. Resource Queueing System for Analysis of Network Slicing Performance with QoS-Based Isolation. In Information Technologies and Mathematical Modelling. Queueing Theory and Applications. ITMM 2020. Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1391, pp. 198–211. [Google Scholar]
- Nazarov, A.; Moiseev, A.; Phung-Duc, T.; Paul, S. Diffusion Limit of Multi-Server Retrial Queue with Setup Time. Mathematics 2020, 8, 2232. [Google Scholar] [CrossRef]
- Dudin, S.; Dudin, A.; Dudina, O.; Samouylov, K. Analysis of a Retrial Queue with Limited Processor Sharing Operating in the Random Environment. In Wired/Wireless Internet Communications. WWIC 2017. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10372, pp. 38–49. [Google Scholar]
0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 | |
---|---|---|---|---|---|---|---|---|---|---|
0.007 | 0.024 | 0.028 | 0.036 | 0.052 | 0.056 | 0.070 | 0.076 | 0.084 | 0.092 | |
0.006 | 0.016 | 0.024 | 0.033 | 0.038 | 0.051 | 0.050 | 0.063 | 0.074 | 0.078 |
0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 | |
---|---|---|---|---|---|---|---|---|---|---|
0.013 | 0.031 | 0.036 | 0.042 | 0.063 | 0.069 | 0.084 | 0.093 | 0.103 | 0.107 | |
0.018 | 0.020 | 0.036 | 0.031 | 0.054 | 0.057 | 0.057 | 0.078 | 0.084 | 0.096 |
0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10 | |
---|---|---|---|---|---|---|---|---|---|---|
0.099 | 0.165 | 0.190 | 0.229 | 0.249 | 0.253 | 0.251 | 0.241 | 0.231 | 0.220 | |
0.014 | 0.030 | 0.045 | 0.062 | 0.076 | 0.090 | 0.098 | 0.110 | 0.120 | 0.128 |
0.1 | 0.05 | 0.01 | |
---|---|---|---|
4 | 0.273 | 0.295 | 0.315 |
5 | 0.098 | 0.107 | 0.115 |
6 | 0.069 | 0.074 | 0.079 |
7 | 0.038 | 0.041 | 0.044 |
8 | 0.015 | 0.016 | 0.018 |
0.1 | 0.05 | 0.01 | |
---|---|---|---|
4 | 0.643 | 0.676 | 0.704 |
5 | 0.500 | 0.525 | 0.547 |
6 | 0.284 | 0.303 | 0.320 |
7 | 0.151 | 0.162 | 0.172 |
8 | 0.097 | 0.104 | 0.111 |
0.1 | 0.05 | 0.01 | |
---|---|---|---|
4 | 0.059 | 0.159 | 0.273 |
5 | 0.020 | 0.057 | 0.098 |
6 | 0.007 | 0.031 | 0.069 |
7 | 0.002 | 0.016 | 0.038 |
8 | 0.0009 | 0.006 | 0.015 |
0.1 | 0.05 | 0.01 | |
---|---|---|---|
4 | 0.319 | 0.484 | 0.643 |
5 | 0.155 | 0.328 | 0.500 |
6 | 0.069 | 0.176 | 0.284 |
7 | 0.026 | 0.083 | 0.151 |
8 | 0.010 | 0.045 | 0.097 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lisovskaya, E.; Fedorova, E.; Salimzyanov, R.; Moiseeva, S. Resource Retrial Queue with Two Orbits and Negative Customers. Mathematics 2022, 10, 321. https://doi.org/10.3390/math10030321
Lisovskaya E, Fedorova E, Salimzyanov R, Moiseeva S. Resource Retrial Queue with Two Orbits and Negative Customers. Mathematics. 2022; 10(3):321. https://doi.org/10.3390/math10030321
Chicago/Turabian StyleLisovskaya, Ekaterina, Ekaterina Fedorova, Radmir Salimzyanov, and Svetlana Moiseeva. 2022. "Resource Retrial Queue with Two Orbits and Negative Customers" Mathematics 10, no. 3: 321. https://doi.org/10.3390/math10030321
APA StyleLisovskaya, E., Fedorova, E., Salimzyanov, R., & Moiseeva, S. (2022). Resource Retrial Queue with Two Orbits and Negative Customers. Mathematics, 10(3), 321. https://doi.org/10.3390/math10030321