Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory
Abstract
:1. Introduction
- Based on the decomposition technique, we decomposed the Hammerstein system into two models, each of which is expressed as a regression form in the parameters of the nonlinear part or in the parameters of the linear part, and we propose a hierarchical least-squares algorithm.
- By applying the data filtering technique, the input–output data are filtered, and a filtering-based hierarchical least-squares algorithm is presented for Hammerstein finite impulse response moving average systems to improve the accuracy of parameter estimation.
2. System Description and Identification Model
3. The Hierarchical Least-Squares Algorithm
- Set the initial values: let t = 1, , , , , , , ; and for and set a small positive number .
- Compute the noise term using (25).
- Compare with and compare with : if and , terminate recursive calculation procedure and obtain , and ; otherwise, increase t by 1 and go to step 2.
4. The Convergence Analysis of the Hierarchical Least-Squares Algorithm
5. The Filtering Based Recursive Least-Squares Algorithm
- Set the initial values: let t = 1, , , , , , , , ; and for and set a small positive number .
- Compute the noise term using (54).
- Compare with and compare with : if and , terminate recursive calculation procedure and obtain , and ; otherwise, increase t by 1 and go to step 2.
6. Examples
- The estimation errors given by the HLS algorithm and the F–HLS algorithm become generally smaller and smaller as t increases.
- Compared with the HLS algorithm, the F–HLS algorithm has higher parameter estimation accuracy.
- The predictions of the residuals are close to the true residuals, and the estimated outputs are close to the true outputs.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pillonetto, G.; Chiuso, A.; Nicolao, G. Stable spline identification of linear systems under missing data. Automatica 2019, 108, 108493. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Y.; Zhang, K. Accurate and fast parameter identification of conditionally Gaussian Markov jump linear system with input control. Automatica 2022, 137, 109928. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, X.; Xu, L. The innovation algorithms for multivariable state-space models. Int. J. Adapt. Control Signal Process. 2019, 33, 1601–1608. [Google Scholar] [CrossRef]
- Li, X.D.; Li, P. Stability of time-delay systems with impulsive control involving stabilizing delays. Automatica 2021, 124, 109336. [Google Scholar] [CrossRef]
- Peng, H.X.; He, W.J.; Zhang, Y.L.; Li, X.; Ding, Y.; Menon, V.G.; Verma, S. Covert non-orthogonal multiple access communication assisted by multi-antenna jamming Author links open overlay. Phys. Commun. 2022, 52, 101598. [Google Scholar] [CrossRef]
- Ding, F.; Liu, G.; Liu, X.P. Parameter estimation with scarce measurements. Automatica 2011, 47, 1646–1655. [Google Scholar] [CrossRef]
- Shu, J.; He, J.C.; Li, L. MSIS: Multispectral instance segmentation method for power equipment. Comput. Intell. Neurosci. 2022, 2022, 2864717. [Google Scholar] [CrossRef]
- You, J.Y.; Liu, Y.J. Iterative identification for multivariable systems with time-delays based on basis pursuit de-noising and auxiliary model. Algorithms 2018, 11, 180. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Ding, F. Novel data filtering based parameter identification for multiple-input multipleoutput systems using the auxiliary model. Automatica 2016, 71, 308–313. [Google Scholar] [CrossRef]
- Lenka, B.K. Fractional comparison method and asymptotic stability results for multivariable fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 398–415. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Ding, F.; Yang, E.F. Parameter estimation algorithm for multivariable controlled autoregressive autoregressive moving average systems. Digit. Signal Process. 2018, 83, 323–331. [Google Scholar] [CrossRef]
- Pan, J.; Ma, H.; Liu, Q.Y. Recursive coupled projection algorithms for multivariable output-error-like systems with coloured noises. IET Signal Process 2020, 14, 455–466. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, Q.M. Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse responses. Int. J. Syst. Sci. 2021, 52, 1806–1821. [Google Scholar] [CrossRef]
- Ding, F.; Chen, T. Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Trans. Autom. Control 2005, 50, 1436–1441. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, E.F. State estimation for bilinear systems through minimizing the covariance matrix of the state estimation errors. Int. J. Adapt. Control. Signal Process. 2019, 33, 1157–1173. [Google Scholar] [CrossRef]
- Zhang, X. Hierarchical parameter and state estimation for bilinear systems. Int. J. Syst. Sci. 2020, 51, 275–290. [Google Scholar] [CrossRef]
- Ding, F.; Lv, L.; Pan, J.; Wan, X.; Jin, X.B. Two-stage gradient-based iterative estimation methods for controlled autoregressive systems using the measurement data. Int. J. Control Autom. Syst. 2020, 18, 886–896. [Google Scholar] [CrossRef]
- Xu, L.; Chen, F.Y.; Hayat, T. Hierarchical recursive signal modeling for multi-frequency signals based on discrete measured data. Int. J. Adapt. Control Signal Process. 2021, 35, 676–693. [Google Scholar] [CrossRef]
- Katahira, K. How hierarchical models improve point estimates of model parameters at the individual level. J. Math. Psychol. 2016, 73, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Atitallah, A.; Bedoui, S.; Abderrahim, K. Multistage for identification of Wiener time delay systems based on hierarchical gradient approach. Math. Comput. Model. Dyn. Syst. 2017, 23, 222–239. [Google Scholar] [CrossRef]
- Wang, Y.J.; Wu, M.H. Recursive parameter estimation algorithm for multivariate output-error systems. J. Frankl. Inst. 2018, 355, 5163–5181. [Google Scholar] [CrossRef]
- Ding, F.; Wang, Y.J. The filtering based iterative identification for multivariable systems. IET Control Theory Appl. 2016, 10, 894–902. [Google Scholar]
- Ji, Y.; Jiang, X.K.; Wan, L.J. Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems. J. Frankl. Inst. 2020, 357, 5019–5032. [Google Scholar] [CrossRef]
- Wang, D.Q.; Mao, L.; Ding, F. Recasted models-based hierarchical extended stochastic gradient method for MIMO nonlinear systems. IET Control Theory Appl. 2017, 11, 476–485. [Google Scholar] [CrossRef]
- Li, X.D.; Li, P. Input-to-state stability of nonlinear systems: Event-triggered impulsive control. IEEE Trans. Autom. Control 2021. [Google Scholar] [CrossRef]
- Li, P.; Li, X.D.; Lu, J.Q. Input-to-state stability of impulsive delay systems with multiple impulses. IEEE Trans. Autom. Control 2021, 66, 362–368. [Google Scholar] [CrossRef]
- Chen, F.Y.; Xu, L.; Hayat, T. Data filtering based maximum likelihood extended gradient method for multivariable systems with autoregressive moving average noise. J. Frankl. Inst. 2018, 355, 3381–3398. [Google Scholar] [CrossRef]
- Mao, Y.W.; Ding, F. Parameter estimation for nonlinear systems by using the data filtering and the multi-innovation identification theory. Int. J. Comput. Math. 2016, 93, 1869–1885. [Google Scholar] [CrossRef]
- Li, M.H.; Liu, X.M. The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Signal Process. 2018, 147, 23–34. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Zhou, Y.Q.; Wang, X.Y.; Wang, Z.; Bai, Y. Water quality evolution mechanism modeling and health risk assessment based on stochastic hybrid dynamic systems. Expert Syst. Appl. 2022, 193, 116404. [Google Scholar] [CrossRef]
- Li, W.L.; Jia, Y.M.; Du, J.P. Event-triggered Kalman consensus filter over sensor networks. IET Control Theory Appl. 2015, 10, 103–110. [Google Scholar] [CrossRef]
- Kruzick, S.; Moura, J.M.F. Optimal filter design for signal processing on random graphs: Accelerated consensus. IEEE Trans. Signal Process. 2018, 66, 1258–1272. [Google Scholar] [CrossRef]
- Pan, X.; Zhao, J.; Xu, J. An object-based and heterogeneous segment filter convolutional neural network for high-resolution remote sensing image classification. Int. J. Remote Sens. 2019, 40, 5892–5916. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Zhang, X. Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data length. IEEE Trans. Circuits Syst. Express Briefs 2021, 68, 3597–3601. [Google Scholar] [CrossRef]
- Ding, F.; Chen, T. Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica 2004, 40, 1739–1748. [Google Scholar] [CrossRef]
- Ding, F.; Shi, Y.; Chen, Y.T. Auxiliary model-based least-squares identification methods for Hammerstein output-error systems. Syst. Control Lett. 2007, 56, 373–380. [Google Scholar] [CrossRef]
- Zhou, Y.H. Modeling nonlinear processes using the radial basis function-based state-dependent autoregressive models. IEEE Signal Process. Lett. 2020, 27, 1600–1604. [Google Scholar] [CrossRef]
- Liu, Y.J.; Shi, Y. An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 2014, 50, 962–970. [Google Scholar] [CrossRef]
- Zhang, X. Optimal adaptive filtering algorithm by using the fractional-order derivative. IEEE Signal Process. Lett. 2022, 29, 399–403. [Google Scholar] [CrossRef]
t | 100 | 200 | 500 | 1000 | 2000 | 3000 | True Values | |
---|---|---|---|---|---|---|---|---|
−0.50914 | −0.30750 | −0.19701 | −0.22835 | −0.29013 | −0.29596 | −0.28000 | ||
0.97766 | 0.56617 | 0.51217 | 0.32163 | 0.14490 | 0.13167 | 0.06000 | ||
0.11384 | 0.21689 | 0.03764 | −0.11184 | −0.19503 | −0.25967 | −0.34000 | ||
−0.80709 | −0.63473 | −0.25479 | −0.17204 | −0.24346 | −0.25086 | −0.27000 | ||
0.74403 | 0.81074 | 0.74457 | 0.81258 | 0.92845 | 0.91909 | 1.10000 | ||
0.44263 | 1.10990 | 0.95009 | 1.12074 | 1.14401 | 1.21750 | 1.40000 | ||
−0.12767 | 0.00039 | 0.27178 | 0.21795 | 0.28146 | 0.33896 | 0.41000 | ||
0.28715 | 0.69936 | 0.51335 | 0.40011 | 0.43399 | 0.42026 | 0.54000 | ||
−0.52470 | −0.44508 | −0.39763 | −0.37525 | −0.37048 | −0.39093 | −0.35000 | ||
−0.20855 | −0.21843 | −0.24514 | −0.25373 | −0.27027 | −0.27842 | −0.40000 | ||
0.28346 | 0.34036 | 0.27891 | 0.26296 | 0.23975 | 0.23523 | 0.14000 | ||
−0.29712 | −0.34020 | −0.32389 | −0.33012 | −0.33797 | −0.34912 | −0.34000 | ||
0.14994 | 0.26180 | 0.45948 | 0.68975 | 0.90551 | 1.01653 | 1.00000 | ||
0.50161 | 0.40490 | 0.23834 | 0.11798 | 0.06374 | 0.06636 | 0.11000 | ||
83.88885 | 57.71077 | 44.53619 | 30.11516 | 18.88155 | 15.33941 |
t | 100 | 200 | 500 | 1000 | 2000 | 3000 | True Values | |
---|---|---|---|---|---|---|---|---|
−0.44432 | −0.40006 | −0.38992 | −0.31198 | −0.26693 | −0.26510 | −0.28000 | ||
0.56573 | −0.09028 | 0.00964 | −0.06114 | −0.06901 | 0.00239 | 0.06000 | ||
−0.12045 | −0.04354 | −0.31996 | −0.30311 | −0.33949 | −0.33982 | −0.34000 | ||
−0.22202 | −0.11342 | 0.01576 | −0.12291 | −0.19827 | −0.23634 | −0.27000 | ||
1.04323 | 1.00861 | 1.21022 | 1.08627 | 1.01177 | 1.03408 | 1.10000 | ||
0.80616 | 1.08325 | 1.03559 | 1.20325 | 1.32250 | 1.35832 | 1.40000 | ||
0.41692 | 0.42105 | 0.36272 | 0.43777 | 0.45083 | 0.41805 | 0.41000 | ||
1.13348 | 0.87373 | 0.73620 | 0.53233 | 0.49740 | 0.50385 | 0.54000 | ||
−0.37277 | −0.35597 | −0.40370 | −0.38316 | −0.40989 | −0.42941 | −0.35000 | ||
−0.41897 | −0.38966 | −0.42279 | −0.39275 | −0.41758 | −0.43019 | −0.40000 | ||
−0.05560 | 0.01713 | 0.03196 | 0.08860 | 0.11363 | 0.12266 | 0.14000 | ||
−0.40705 | −0.38088 | −0.38310 | −0.35594 | −0.35451 | −0.36378 | −0.34000 | ||
0.72392 | 0.83949 | 1.00022 | 1.05937 | 1.10617 | 1.14589 | 1.00000 | ||
−0.20897 | −0.13856 | −0.02692 | 0.09362 | 0.15665 | 0.18479 | 0.11000 | ||
48.67846 | 29.82225 | 24.42703 | 12.72200 | 10.38521 | 9.39920 |
t | 100 | 200 | 500 | 1000 | 2000 | 3000 | True Values | |
---|---|---|---|---|---|---|---|---|
−0.46534 | −0.47768 | −0.40413 | −0.32596 | −0.27511 | −0.27812 | −0.28000 | ||
0.54645 | 0.51758 | 0.32302 | 0.22073 | 0.12924 | 0.10861 | 0.06000 | ||
0.34879 | 0.18063 | −0.05504 | −0.22830 | −0.36081 | −0.33090 | −0.34000 | ||
−1.13416 | −1.18888 | −0.91111 | −0.53083 | −0.36501 | −0.39249 | −0.27000 | ||
1.37312 | 1.07871 | 0.98702 | 1.02387 | 1.06733 | 1.06065 | 1.10000 | ||
1.20017 | 1.40717 | 1.39712 | 1.26345 | 1.32548 | 1.35968 | 1.40000 | ||
−0.50420 | −0.17069 | 0.29524 | 0.40066 | 0.39513 | 0.47011 | 0.41000 | ||
0.46208 | 0.26937 | 0.49625 | 0.60009 | 0.72538 | 0.68512 | 0.54000 | ||
−0.28981 | −0.29722 | −0.34828 | −0.35355 | −0.38810 | −0.38610 | −0.35000 | ||
−0.46484 | −0.45777 | −0.42673 | −0.41237 | −0.41568 | −0.42091 | −0.40000 | ||
0.19233 | 0.17823 | 0.17974 | 0.14425 | 0.14231 | 0.12582 | 0.14000 | ||
−0.18200 | −0.18516 | −0.18579 | −0.19230 | −0.22195 | −0.23310 | −0.34000 | ||
0.47710 | 0.58835 | 0.74277 | 0.88623 | 0.97788 | 1.02303 | 1.00000 | ||
−0.17863 | −0.14081 | −0.14153 | −0.08345 | 0.01088 | 0.05732 | 0.11000 | ||
73.00597 | 61.84658 | 37.76548 | 19.80014 | 12.36094 | 10.78310 |
t | 100 | 200 | 500 | 1000 | 2000 | 3000 | True Values | |
---|---|---|---|---|---|---|---|---|
−0.37740 | −0.41815 | −0.37182 | −0.31015 | −0.25496 | −0.26324 | −0.28000 | ||
0.51706 | 0.52888 | 0.34646 | 0.24585 | 0.14247 | 0.12024 | 0.06000 | ||
0.21828 | 0.05468 | −0.08284 | −0.18580 | −0.31081 | −0.27801 | −0.34000 | ||
−0.88659 | −0.96682 | −0.73059 | −0.42252 | −0.26874 | −0.30345 | −0.27000 | ||
1.50800 | 1.15388 | 1.02343 | 1.05184 | 1.08214 | 1.07516 | 1.10000 | ||
1.27160 | 1.47267 | 1.42432 | 1.25340 | 1.32645 | 1.36304 | 1.40000 | ||
−0.47274 | −0.14330 | 0.25538 | 0.31426 | 0.32086 | 0.38596 | 0.41000 | ||
0.34738 | 0.16458 | 0.40585 | 0.52964 | 0.61534 | 0.57783 | 0.54000 | ||
−0.34054 | −0.33682 | −0.37719 | −0.37203 | −0.40047 | −0.39525 | −0.35000 | ||
−0.45282 | −0.44870 | −0.41742 | −0.40349 | −0.40820 | −0.41487 | −0.40000 | ||
0.21347 | 0.20244 | 0.21104 | 0.17728 | 0.17622 | 0.15573 | 0.14000 | ||
−0.22228 | −0.22713 | −0.22743 | −0.22955 | −0.26159 | −0.27247 | −0.34000 | ||
0.52496 | 0.64401 | 0.80149 | 0.91977 | 1.00864 | 1.05000 | 1.00000 | ||
−0.13503 | −0.10317 | −0.11367 | −0.03595 | 0.05006 | 0.09420 | 0.11000 | ||
64.49938 | 53.52304 | 31.39408 | 17.18469 | 8.81068 | 6.52457 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Cao, J. Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory. Mathematics 2022, 10, 438. https://doi.org/10.3390/math10030438
Ji Y, Cao J. Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory. Mathematics. 2022; 10(3):438. https://doi.org/10.3390/math10030438
Chicago/Turabian StyleJi, Yan, and Jinde Cao. 2022. "Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory" Mathematics 10, no. 3: 438. https://doi.org/10.3390/math10030438
APA StyleJi, Y., & Cao, J. (2022). Parameter Estimation Algorithms for Hammerstein Finite Impulse Response Moving Average Systems Using the Data Filtering Theory. Mathematics, 10(3), 438. https://doi.org/10.3390/math10030438