Age-Invariant Adversarial Feature Learning for Kinship Verification
Abstract
:1. Introduction
- We design an Age-Invariant Adversarial Feature Learning module (AIAF) that can effectively extract age-invariant features. Within the proposed AIAF, the Feature Splitter (FS) is designed to split original features into two parts. An Identity classifier and Age classifier are trained to ensure that these two parts represent identity and age information, respectively;
- An Adversarial Canonical Correlation Regularizer (ACCR) is further introduced to reduce the correlation between the age features and identity features using a form of adversarial mechanism;
- Unlike face recognition, the kinship verification task is more dependent on key features. Some features may be critical than other features; e.g., the contribution of shape and surface reflectance information to kinship detection may be different [19]. To this end, we design an Identity Feature Weighted module (IFW) that assigns different weights to different facial features according to their importance. Finally, the weighted features are leveraged to make the final decision.
2. Related Work
2.1. Kinship Verification
2.2. Deep Learning-Based Face Feature Learning
3. Methodology
3.1. Motivation
3.2. Age-Invariant Adversarial Feature Learning Module
3.2.1. Feature Splitter
3.2.2. Identity Loss
3.2.3. Age Loss
3.2.4. Adversarial Canonical Correlation Regularizer Loss
3.2.5. Multi-Task Learning
Algorithm 1: Age-Invariant Adversarial Feature Learning algorithm. |
3.3. Identity Feature Weighted Module
4. Experiments
4.1. Implementation Details
4.1.1. Network Configuration
- Feature Splitter. In our implementation, FS is an operation that directly splits a 1024-dimensional input feature vector at the middle into two 512-dimensional feature vectors. We set the angular margin penalty m to 0.3 and the scaling factor s to 64.
- Age Classifier. Following common practice, the age classifier comprises three fully connected layers with 512, 512, and 8 (corresponding to 8 age groups) neurons, respectively. The first two layers are followed by Leaky ReLU.
- Adversarial Canonical Correlation Regularizer. The dimension of the identity projection vector is and that of the age projection vector is the same.
- Multi-task Learning. We performed hyper-parameter search and empirically chose which works best in our experiments. We use Adam optimizer to train the model with a initial learning rate of 1 × 10 . The batchsize is set to 512.
- Identity Feature Weighted module. The weight matrix M is initialized with a diagonal matrix. is set to 1 × 10 .
4.1.2. Data Preprocessing
4.2. Experiments on KinFaceW-I and KinFaceW-II Datasets
4.3. Experiments on FIW Dataset
4.4. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xia, S.; Shao, M.; Fu, Y. Kinship verification through transfer learning. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16–22 July 2011. [Google Scholar]
- Lu, J.; Zhou, X.; Tan, Y.P.; Shang, Y.; Zhou, J. Neighborhood repulsed metric learning for kinship verification. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 36, 331–345. [Google Scholar]
- Hu, J.; Lu, J.; Yuan, J.; Tan, Y.P. Large Margin Multi-metric Learning for Face and Kinship Verification in the Wild. In Proceedings of the 12th Asian Conference on Computer Vision (ACCV 2014), Singapore, 1–5 November 2014. [Google Scholar]
- Lu, J.; Hu, J.; Liong, V.E.; Zhou, X.; Bottino, A.; Islam, I.U.; Vieira, T.F.; Qin, X.; Tan, X.; Chen, S.; et al. The fg 2015 kinship verification in the wild evaluation. In Proceedings of the 2015 11th IEEE international Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia, 4–8 May 2015; Volume 1, pp. 1–7. [Google Scholar]
- Kou, L.; Zhou, X.; Xu, M.; Shang, Y. Learning a Genetic Measure for Kinship Verification Using Facial Images. Math. Probl. Eng. 2015, 2015, 472473. [Google Scholar] [CrossRef]
- Zhou, X.; Shang, Y.; Yan, H.; Guo, G. Ensemble similarity learning for kinship verification from facial images in the wild. Inf. Fusion 2016, 32, 40–48. [Google Scholar] [CrossRef]
- Robinson, J.P.; Shao, M.; Wu, Y.; Fu, Y. Families in the Wild (FIW): Large-Scale Kinship Image Da. Kinship verification from facial images by scalable similarity fusion.tabase and Benchmarks. In Proceedings of the 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016. [Google Scholar]
- Zhou, X.; Yan, H.; Shang, Y. Kinship verification from facial images by scalable similarity fusion. Neurocomputing 2016, 197, 136–142. [Google Scholar] [CrossRef]
- Wang, S.; Robinson, J.P.; Fu, Y. Kinship verification on families in the wild with marginalized denoising metric learning. In Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 30 May–3 June 2017; pp. 216–221. [Google Scholar]
- Wang, S.; Ding, Z.; Yun, F. Cross-Generation Kinship Verification with Sparse Discriminative Metric. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 2783–2790. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.P.; Shao, M.; Wu, Y.; Liu, H.; Gillis, T.; Fu, Y. Visual kinship recognition of families in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2624–2637. [Google Scholar] [CrossRef]
- Nandy, A.; Mondal, S.S. Kinship verification using deep siamese convolutional neural network. In Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, France, 14–18 May 2019; pp. 1–5. [Google Scholar]
- Yan, H.; Wang, S. Learning part-aware attention networks for kinship verification. Pattern Recognit. Lett. 2019, 128, 169–175. [Google Scholar] [CrossRef]
- Jain, A.; Bhagat, N.; Srivastava, V.; Tyagi, P.; Jain, P. A Feature-Based kinship verification technique using convolutional neural network. In Advances in Data Sciences, Security and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 353–362. [Google Scholar]
- Chergui, A.; Ouchtati, S.; Mavromatis, S.; Bekhouche, S.E.; Sequeira, J. Investigating Deep CNNs Models Applied in Kinship Verification through Facial Images. In Proceedings of the 2019 5th International Conference on Frontiers of Signal Processing (ICFSP), Marseille, France, 18–20 September 2019. [Google Scholar]
- Lu, J.; Wang, G.; Deng, W.; Jia, K. Reconstruction-based metric learning for unconstrained face verification. IEEE Trans. Inf. Forensics Secur. 2014, 10, 79–89. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, G. Ls-cnn: Characterizing local patches at multiple scales for face recognition. IEEE Trans. Inf. Forensics Secur. 2019, 15, 1640–1653. [Google Scholar] [CrossRef]
- Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. SphereFace: Deep Hypersphere Embedding for Face Recognition. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Xia, S.; Shao, M.; Luo, J.; Fu, Y. Understanding kin relationships in a photo. IEEE Trans. Multimed. 2012, 14, 1046–1056. [Google Scholar] [CrossRef]
- Fang, R.; Tang, K.D.; Snavely, N.; Chen, T. Towards computational models of kinship verification. In Proceedings of the International Conference on Image Processing, ICIP 2010, Hong Kong, China, 26–29 September 2010. [Google Scholar]
- Zhou, X.; Hu, J.; Lu, J.; Shang, Y.; Guan, Y. Kinship verification from facial images under uncontrolled condition. In Proceedings of the 19th ACM International Conference on Multimedia, Scottsdale, AZ, USA, 28 November–2 December 2011; pp. 953–956. [Google Scholar]
- Guo, G.; Wang, X. Kinship Measurement on Salient Facial Features. IEEE Trans. Instrum. Meas. 2012, 61, 2322–2325. [Google Scholar] [CrossRef]
- Bottino, A.; Vieira, T.F.; Ul Islam, I. Geometric and Textural Cues for Automatic Kinship Verification. Int. J. Pattern Recognit. Artif. Intell. 2015, 29, 1556001. [Google Scholar] [CrossRef]
- Bottinok, A.; Islam, I.U.; Vieira, T.F. A multi-perspective holistic approach to Kinship Verification in the Wild. In Proceedings of the IEEE International Conference & Workshops on Automatic Face & Gesture Recognition, Ljubljana, Slovenia, 4–8 May 2015; pp. 1–6. [Google Scholar]
- Yan, H.; Lu, J.; Zhou, X. Prototype-based discriminative feature learning for kinship verification. IEEE Trans. Cybern. 2014, 45, 2535–2545. [Google Scholar] [CrossRef]
- Somanath, G.; Kambhamettu, C. Can faces verify blood-relations? In Proceedings of the 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA, USA, 23–27 September 2012; pp. 105–112. [Google Scholar]
- Yan, H.; Lu, J.; Deng, W.; Zhou, X. Discriminative multimetric learning for kinship verification. IEEE Trans. Inf. Forensics Secur. 2014, 9, 1169–1178. [Google Scholar] [CrossRef]
- Xu, M.; Shang, Y. Kinship measurement on face images by structured similarity fusion. IEEE Access 2016, 4, 10280–10287. [Google Scholar] [CrossRef]
- Qin, X.; Tan, X.; Chen, S. Tri-subject kinship verification: Understanding the core of a family. IEEE Trans. Multimed. 2015, 17, 1855–1867. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Jin, K.; Xu, M.; Guo, G. Learning Deep Compact Similarity Metric for Kinship Verification from Face Images. Inf. Fusion 2018, 48, 84–94. [Google Scholar] [CrossRef]
- Tola, E.; Lepetit, V.; Fua, P. Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 815–830. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.G.; Song, Z.; Zheng, F.; Shao, L. Learning a Multiple Kernel Similarity Metric for Kinship Verification. Inf. Sci. 2017, 430, 247–260. [Google Scholar] [CrossRef]
- Wei, Z.; Xu, M.; Geng, L.; Liu, H.; Yin, H. Adversarial Similarity Metric Learning for Kinship Verification. IEEE Access 2019, 7, 100029–100035. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, A.; Ortiz, E.G.; Villegas, R.; Shah, M. Who do i look like? Determining parent-offspring resemblance via gated autoencoders. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1757–1764. [Google Scholar]
- Zhang, K.; Huang, Y.; Song, C.; Wu, H.; Wang, L.; Intelligence, S.M. Kinship Verification with Deep Convolutional Neural Networks. 2015. Available online: www.bmva.org/bmvc/2015/papers/paper148/paper148.pdf (accessed on 14 December 2021).
- Ding, Z.; Suh, S.; Han, J.J.; Choi, C.; Fu, Y. Discriminative low-rank metric learning for face recognition. In Proceedings of the 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia, 4–8 May 2015; Volume 1, pp. 1–6. [Google Scholar]
- Van, T.N.; Hoang, V.T. Early and late features fusion for kinship verification based on constraint selection. In Proceedings of the 2019 25th Asia-Pacific Conference on Communications (APCC), Ho Chi Minh City, Vietnam, 6–8 November 2019; pp. 116–121. [Google Scholar]
- Dehshibi, M.M.; Shanbehzadeh, J. Cubic norm and kernel-based bi-directional PCA: Toward age-aware facial kinship verification. Vis. Comput. 2017, 35, 23–40. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Wang, X. Rethinking feature discrimination and polymerization for large-scale recognition. arXiv 2017, arXiv:1710.00870. [Google Scholar]
- Wang, F.; Cheng, J.; Liu, W.; Liu, H. Additive margin softmax for face verification. IEEE Signal Process. Lett. 2018, 25, 926–930. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Li, Z.; Liu, W. CosFace: Large Margin Cosine Loss for Deep Face Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4690–4699. [Google Scholar]
- Wang, H.; Gong, D.; Li, Z.; Liu, W. Decorrelated adversarial learning for age-invariant face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3527–3536. [Google Scholar]
- Hotelling, H. Relations between two sets of variates. In Breakthroughs in Statistics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 162–190. [Google Scholar]
- Wang, Y.; Gong, D.; Zhou, Z.; Ji, X.; Wang, H.; Li, Z.; Liu, W.; Zhang, T. Orthogonal deep features decomposition for age-invariant face recognition. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 738–753. [Google Scholar]
- Rothe, R.; Timofte, R.; Gool, L.V. DEX: Deep EXpectation of Apparent Age from a Single Image. In Proceedings of the IEEE International Conference on Computer Vision Workshop, Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Rothe, R.; Timofte, R.; Van Gool, L. Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vis. 2018, 126, 144–157. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond empirical risk minimization. arXiv 2017, arXiv:1710.09412. [Google Scholar]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York City, NY, USA, 7 February 2020; Volume 34, pp. 13001–13008. [Google Scholar]
- Cao, Q.; Shen, L.; Xie, W.; Parkhi, O.M.; Zisserman, A. Vggface2: A dataset for recognising faces across pose and age. In Proceedings of the 2018 13th IEEE international Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 67–74. [Google Scholar]
- Chen, B.C.; Chen, C.S.; Hsu, W.H. Cross-age reference coding for age-invariant face recognition and retrieval. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 768–783. [Google Scholar]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Hu, J.; Tan, Y.P. Discriminative deep metric learning for face and kinship verification. IEEE Trans. Image Process. 2017, 26, 4269–4282. [Google Scholar] [CrossRef]
- Ahonen, T.; Hadid, A.; Pietikainen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Zhang, L.; Duan, Q.; Zhang, D.; Jia, W.; Wang, X. AdvKin: Adversarial convolutional network for kinship verification. IEEE Trans. Cybern. 2020, 51, 5883–5896. [Google Scholar] [CrossRef]
- Laiadi, O.; Ouamane, A.; Benakcha, A.; Taleb-Ahmed, A.; Hadid, A. Tensor cross-view quadratic discriminant analysis for kinship verification in the wild. Neurocomputing 2020, 377, 286–300. [Google Scholar] [CrossRef]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. 2015. Available online: http://cis.csuohio.edu/~sschung/CIS660/DeepFaceRecognition_parkhi15.pdf (accessed on 14 December 2021).
- Davis, J.V.; Kulis, B.; Jain, P.; Sra, S.; Dhillon, I.S. Information-theoretic metric learning. In Proceedings of the 24th International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; pp. 209–216. [Google Scholar]
- He, X.; Niyogi, P. Locality preserving projections. Adv. Neural Inf. Process. Syst. 2004, 16, 153–160. [Google Scholar]
- Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10, 207–244. [Google Scholar]
- Peng, Y.; Wang, S.; Lu, B.L. Marginalized denoising autoencoder via graph regularization for domain adaptation. In International Conference on Neural Information Processing; Springer: Berlin/Heidelberg, Germany, 2013; pp. 156–163. [Google Scholar]
- Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 499–515. [Google Scholar]
- He, X.; Cai, D.; Yan, S.; Zhang, H.J. Neighborhood preserving embedding. In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, Beijing, China, 17–21 October 2005; Volume 2, pp. 1208–1213. [Google Scholar]
Kinship | Parent-Child | Average | |||
---|---|---|---|---|---|
Method | F-S | F-D | M-S | M-D | |
SILD (LBP [55]) | 78.22 | 69.40 | 66.81 | 70.10 | 71.13 |
SILD (HOG [56]) | 80.46 | 72.39 | 69.82 | 77.10 | 74.94 |
BIU [4] | 86.90 | 76.48 | 73.89 | 79.75 | 79.25 |
NUAA [4] | 86.25 | 80.64 | 81.03 | 83.93 | 82.96 |
ULPGC [4] | 71.25 | 70.85 | 58.52 | 80.89 | 70.01 |
IML [27] | 70.50 | 67.50 | 65.50 | 72.00 | 68.88 |
MNRML [2] | 72.50 | 66.50 | 66.20 | 72.00 | 69.30 |
MPDFL [25] | 67.50 | 73.50 | 73.10 | 66.10 | 70.05 |
GA [35] | 72.50 | 76.40 | 77.30 | 71.90 | 74.53 |
DDMML [54] | 86.40 | 79.10 | 81.40 | 87.00 | 83.48 |
AdvKin [57] | 75.70 | 78.30 | 77.60 | 83.10 | 78.68 |
Human A [2] | 61.00 | 58.00 | 66.00 | 70.00 | 63.75 |
Human B [2] | 67.00 | 65.00 | 75.00 | 77.00 | 71.00 |
AIAF + IFW (Ours) | 88.70 | 80.80 | 82.60 | 88.20 | 85.08 |
Kinship | Parent-Child | Average | |||
---|---|---|---|---|---|
Method | F-S | F-D | M-S | M-D | |
SILD (LBP [55]) | 78.20 | 70.00 | 71.20 | 67.80 | 71.80 |
SILD (HOG [56]) | 79.60 | 71.60 | 73.20 | 69.60 | 73.50 |
BIU [4] | 87.51 | 80.82 | 79.78 | 75.63 | 80.94 |
NUAA [4] | 84.40 | 81.60 | 82.80 | 81.60 | 82.50 |
ULPGC [4] | 85.40 | 75.80 | 75.60 | 81.60 | 80.00 |
IML [27] | 74.50 | 74.00 | 76.50 | 78.50 | 75.88 |
MNRML [2] | 76.90 | 74.30 | 77.40 | 77.60 | 76.55 |
MPDFL [25] | 74.70 | 77.30 | 78.00 | 77.80 | 76.95 |
GA [35] | 76.70 | 83.90 | 84.80 | 83.40 | 82.20 |
DDMML [54] | 87.40 | 83.80 | 83.20 | 83.00 | 84.35 |
XQDA [58] | 85.00 | 80.60 | 80.60 | 80.40 | 81.65 |
Human A [2] | 61.00 | 61.00 | 69.00 | 73.00 | 66.00 |
Human B [2] | 70.00 | 68.00 | 78.00 | 80.00 | 74.00 |
AIAF + IFW (Ours) | 87.20 | 84.00 | 85.20 | 84.60 | 85.25 |
Kinship | Siblings | Parent-Child | Grandparent-Grandchild | Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | B-B | S-S | SIBS | F-D | F-S | M-D | M-S | GF-GD | GF-GS | GM-GD | GM-GS | |
LBP [55] | 55.52 | 57.49 | 55.39 | 55.05 | 53.77 | 55.69 | 54.65 | 55.79 | 55.92 | 54.00 | 55.36 | 55.33 |
SIFT [56] | 57.86 | 59.34 | 56.91 | 56.37 | 56.24 | 55.05 | 56.45 | 57.25 | 55.35 | 57.29 | 56.74 | 56.80 |
VGG-Face [59] | 69.67 | 75.35 | 66.52 | 64.25 | 63.85 | 66.43 | 62.80 | 62.06 | 63.79 | 57.40 | 61.64 | 64.89 |
VGG + ITML [60] | 57.15 | 61.61 | 56.98 | 58.07 | 54.73 | 57.26 | 59.09 | 62.52 | 59.60 | 62.08 | 59.92 | 59.00 |
VGG + LPP [61] | 67.61 | 66.22 | 71.01 | 62.54 | 61.39 | 65.04 | 63.54 | 63.50 | 59.96 | 60.00 | 63.53 | 64.03 |
VGG + LMNN [62] | 67.11 | 68.33 | 66.88 | 65.66 | 67.08 | 68.07 | 66.16 | 61.90 | 60.44 | 63.68 | 60.15 | 65.04 |
VGG + GmDAE [63] | 68.05 | 68.55 | 67.33 | 66.53 | 68.30 | 68.15 | 66.71 | 62.10 | 63.93 | 63.84 | 63.10 | 66.05 |
VGG + DLML [37] | 68.03 | 68.87 | 67.97 | 65.96 | 68.00 | 68.51 | 67.21 | 62.90 | 63.96 | 63.11 | 63.55 | 66.19 |
VGG + mDML [9] | 69.10 | 70.15 | 68.11 | 67.90 | 66.24 | 70.39 | 67.40 | 65.20 | 66.78 | 63.11 | 63.45 | 67.07 |
SphereFace [18] | 71.94 | 77.30 | 70.23 | 69.25 | 68.50 | 71.81 | 69.49 | 66.07 | 66.36 | 64.58 | 65.40 | 69.18 |
ResNet-22 [64] | 65.57 | 69.65 | 60.12 | 59.45 | 60.27 | 61.45 | 59.37 | 55.37 | 58.15 | 59.74 | 59.70 | 61.34 |
XQDA [58] | - | - | - | - | - | - | - | 56.04 | 59.23 | 59.00 | 58.12 | 58.10 |
TXQDA [58] | - | - | - | - | - | - | - | 66.43 | 66.79 | 65.24 | 65.67 | 66.03 |
AdvKin [57] | 65.77 | 65.48 | 65.35 | 63.59 | 64.14 | 63.56 | 66.80 | - | - | - | - | 64.97 |
ResNet + LPP [61] | 69.04 | 75.84 | 67.41 | 65.86 | 65.12 | 68.64 | 64.82 | 58.38 | 59.73 | 62.29 | 62.63 | 65.47 |
- | - | - | 66.47 | 65.31 | 68.59 | 64.57 | 60.51 | 60.85 | 63.03 | 62.88 | 65.59 | |
ResNet + LMNN [62] | 70.38 | 75.18 | 65.29 | 63.53 | 64.46 | 67.01 | 63.64 | 60.31 | 57.57 | 60.81 | 56.01 | 64.06 |
- | - | - | 64.73 | 64.77 | 66.67 | 64.04 | 61.91 | 59.42 | 61.90 | 57.75 | 64.55 | |
ResNet + NPE [65] | 71.55 | 76.09 | 63.26 | 62.01 | 63.11 | 65.60 | 62.91 | 58.64 | 57.71 | 61.86 | 58.63 | 63.76 |
- | - | - | 63.99 | 63.46 | 65.90 | 63.37 | 60.15 | 59.42 | 62.82 | 61.43 | 64.67 | |
ResNet + DLML [54] | 71.41 | 75.66 | 68.61 | 64.31 | 64.56 | 67.63 | 65.67 | 61.36 | 59.99 | 60.60 | 59.78 | 65.42 |
- | - | - | 66.00 | 65.60 | 68.26 | 66.88 | 62.38 | 60.64 | 61.71 | 61.28 | 66.22 | |
ResNet + mDML [9] | 71.81 | 77.06 | 69.94 | 66.45 | 65.16 | 68.55 | 68.33 | 63.04 | 61.19 | 62.49 | 61.49 | 66.86 |
- | - | - | 67.58 | 66.48 | 69.53 | 68.45 | 64.11 | 62.58 | 63.37 | 62.73 | 67.60 | |
ResNet + SDMLoss [10] | 72.61 | 79.38 | 70.35 | 68.27 | 67.96 | 71.32 | 68.77 | 64.73 | 63.98 | 64.64 | 63.54 | 68.68 |
- | - | - | 69.02 | 68.60 | 72.28 | 69.59 | 65.89 | 65.12 | 66.41 | 64.90 | 69.47 | |
AIAF + IFW (Ours) | 73.86 | 85.57 | 77.60 | 79.13 | 78.22 | 76.16 | 86.59 | 69.37 | 69.36 | 70.53 | 78.38 | 76.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, F.; Li, Z.; Yang, W.; Xu, F. Age-Invariant Adversarial Feature Learning for Kinship Verification. Mathematics 2022, 10, 480. https://doi.org/10.3390/math10030480
Liu F, Li Z, Yang W, Xu F. Age-Invariant Adversarial Feature Learning for Kinship Verification. Mathematics. 2022; 10(3):480. https://doi.org/10.3390/math10030480
Chicago/Turabian StyleLiu, Fan, Zewen Li, Wenjie Yang, and Feng Xu. 2022. "Age-Invariant Adversarial Feature Learning for Kinship Verification" Mathematics 10, no. 3: 480. https://doi.org/10.3390/math10030480
APA StyleLiu, F., Li, Z., Yang, W., & Xu, F. (2022). Age-Invariant Adversarial Feature Learning for Kinship Verification. Mathematics, 10(3), 480. https://doi.org/10.3390/math10030480