A Study on the Experimental Design for the Lifetime Performance Index of Rayleigh Lifetime Distribution under Progressive Type I Interval Censoring
Abstract
:1. Introduction
2. Methodology for Testing the Lifetime Performance Index
3. Sampling Design
3.1. The Optimal m and n for Fixed T
- Installation cost Ca—the cost of installing all test units;
- Sample cost Cs—the cost per test unit;
- Inspection cost CI—the cost of using the inspection equipment;
- Operation cost Co—the cost consisting of the personnel cost, depreciation of test equipment and so on. It is proportional to the length of the experimental time period.
Algorithm 1: Search the optimal (m,n) |
|
3.2. The Optimal m, t and n When the Interval Time of the Experiment Is Not Fixed
Algorithm 2: Search the optimal (m,t,n) |
|
3.3. Example
0.1788 0.2892 0.3300 0.4152 0.4212 0.4560 0.4848 0.5184 0.5196 0.5412 0.5556 0.6780 0.6780 0.6780 0.6864 0.6864 0.6888 0.8412 0.9312 0.9864 1.0512 1.0584 1.2792 1.2804 1.7340 |
- Step 1:
- Take a random sample of size n = 12 from the data set. Observe the progressive type I interval censored sample (X1,X2) = (3,4) at the pre-set times (t1,t2) = (0.5,1.0) with censoring schemes of (R1,R2) = (2,3).
- Step 2:
- Obtain the MLE of as = 0.6625991 and then obtain the test statistic = 0.9430573.
- Step 3:
- Compared with the critical value, we have = 0.9557158 > 0.9042. Thus, we can conclude that the lifetime performance index of the product meets the required level of 0.85.
- Step 1:
- Take a random sample of size n = 14 from the data set. Observe the progressive type I interval censored sample (X1,X2) = (1,5) at the pre-set times (t1,t2) = (0.42,0.84) with censoring schemes of (R1,R2) = (2,6).
- Step 2:
- Obtain the MLE of as = 0.7513559 and then obtain the test statistic = 0.9557158.
- Step 3:
- Compared with the critical value, we have = 0.9557158 > 0.9042. Therefore, we reach the same conclusion and reject the null hypothesis.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Montgomery, D.C. Introduction to Statistical Quality Control; John Wiley and Sons Inc.: New York, NY, USA, 1985. [Google Scholar]
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods and Applications; Birkhäuser: Boston, MA, USA, 2000. [Google Scholar]
- Aggarwala, R. Progressive interval censoring: Some mathematical results with applications to inference. Commun. Stat.-Theory Methods 2001, 30, 1921–1935. [Google Scholar] [CrossRef]
- Lee, W.C.; Wu, J.W.; Hong, C.W. Assessing the lifetime performance index of products with the exponential distribution under progressively type II right censored samples. J. Comput. Appl. Math. 2009, 231, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.W.; Lee, W.C.; Lin, L.S.; Hong, M.L. Bayesian test of lifetime performance index for exponential products based on the progressively type II right censored sample. J. Quant. Manag. 2011, 8, 57–77. [Google Scholar]
- Lee, W.C.; Wu, J.W.; Hong, C.W.; Pan, H.Y.; Hung, W.L. Decision procedure of performance assessment of lifetime index of products for the Gompertz distribution. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2010, 224, 493–499. [Google Scholar] [CrossRef]
- Lee, W.C.; Wu, J.W.; Hong, M.L.; Lin, L.S.; Chan, R.L. Assessing the lifetime performance index of Rayleigh products based on the Bayesian estimation under progressive type II right censored samples. J. Comput. Appl. Math. 2011, 235, 1676–1688. [Google Scholar] [CrossRef]
- Wu, J.W.; Lee, W.C.; Hong, C.W.; Yeh, S.Y. Implementing Lifetime Performance Index of Burr XII Products with Progressively Type II Right Censored Sample. Int. J. Innov. Comput. Inf. Control. 2014, 10, 671–693. [Google Scholar]
- Wu, S.F.; Hsieh, Y.T. The assessment on the lifetime performance index of products with Gompertz distribution based on the progressive type I interval censored sample. J. Comput. Appl. Math. 2019, 351, 66–76. [Google Scholar] [CrossRef]
- Wu, S.F.; Xie, Y.J.; Liao, M.F.; Chang, W.T. Reliability sampling design for the lifetime performance index of Gompertz lifetime distribution under progressive type I interval censoring. Mathematics 2021, 9, 2109. [Google Scholar] [CrossRef]
- Wu, S.F.; Lin, M.J. Computational testing algorithmic procedure of assessment for lifetime performance index of products with weibull distribution under progressive type I interval censoring. J. Comput. Appl. Math. 2017, 311, 364–374. [Google Scholar] [CrossRef]
- Wu, S.F.; Wu, Y.C.; Wu, C.H.; Chang, W.T. Sampling design for the lifetime performance index of Weibull lifetime distribution under progressive type I interval censoring. Symmetry 2021, 13, 1691. [Google Scholar]
- Wu, S.F.; Lin, Y.T.; Chang, W.J.; Chang, C.W.; Lin, C. A computational algorithm for the evaluation on the lifetime performance index of products with Rayleigh distribution under progressive type I interval censoring. J. Comput. Appl. Math. 2018, 328, 508–519. [Google Scholar] [CrossRef]
- Huang, S.R.; Wu, S.J. Reliability sampling plans under progressive type-I interval censoring using cost functions. IEEE Trans. Reliab. 2008, 57, 445–451. [Google Scholar] [CrossRef]
- Caroni, C. The correct “ball bearings” data. Lifetime Data Anal. 2002, 8, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Gail, M.H.; Gastwirth, J.L. A scale-free goodness of fit test for the exponential distribution based on the Gini Statistic. J. R. Stat. Soc. B 1978, 40, 350–357. [Google Scholar] [CrossRef]
c1 | 0.875 | 0.90 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
α | β | p | m* | n* | m* | n* | ||||
0.01 | 0.25 | 0.050 | 4 | 309 | 315 | 0.869497 | 3 | 61 | 66 | 0.889173 |
0.075 | 3 | 319 | 324 | 0.869534 | 3 | 62 | 67 | 0.889269 | ||
0.100 | 3 | 327 | 332 | 0.869515 | 3 | 64 | 69 | 0.889127 | ||
0.20 | 0.050 | 4 | 347 | 353 | 0.868502 | 3 | 69 | 74 | 0.887289 | |
0.075 | 3 | 359 | 364 | 0.868519 | 3 | 71 | 76 | 0.887197 | ||
0.100 | 3 | 368 | 373 | 0.868502 | 3 | 72 | 77 | 0.887327 | ||
0.15 | 0.050 | 4 | 395 | 401 | 0.867445 | 3 | 79 | 84 | 0.885299 | |
0.075 | 3 | 408 | 413 | 0.867474 | 3 | 81 | 86 | 0.885262 | ||
0.100 | 3 | 418 | 423 | 0.867462 | 3 | 83 | 88 | 0.885237 | ||
0.05 | 0.25 | 0.050 | 4 | 187 | 193 | 0.867883 | 3 | 38 | 43 | 0.885858 |
0.075 | 3 | 194 | 199 | 0.867877 | 2 | 40 | 44 | 0.886332 | ||
0.100 | 3 | 198 | 203 | 0.867895 | 2 | 41 | 45 | 0.886105 | ||
0.20 | 0.050 | 4 | 217 | 223 | 0.86671 | 3 | 44 | 49 | 0.883769 | |
0.075 | 3 | 225 | 230 | 0.866709 | 3 | 45 | 50 | 0.883769 | ||
0.100 | 3 | 230 | 235 | 0.866714 | 3 | 46 | 51 | 0.883778 | ||
0.15 | 0.050 | 4 | 255 | 261 | 0.865517 | 3 | 53 | 58 | 0.881256 | |
0.075 | 3 | 264 | 269 | 0.865527 | 3 | 54 | 59 | 0.881305 | ||
0.100 | 3 | 270 | 275 | 0.865528 | 3 | 55 | 60 | 0.881362 | ||
0.10 | 0.25 | 0.050 | 3 | 136 | 141 | 0.866571 | 2 | 29 | 33 | 0.883662 |
0.075 | 3 | 139 | 144 | 0.866575 | 3 | 28 | 33 | 0.883426 | ||
0.100 | 3 | 143 | 148 | 0.866532 | 2 | 30 | 34 | 0.883447 | ||
0.20 | 0.050 | 3 | 162 | 167 | 0.865291 | 3 | 33 | 38 | 0.880926 | |
0.075 | 3 | 166 | 171 | 0.865277 | 2 | 35 | 39 | 0.881249 | ||
0.100 | 3 | 170 | 175 | 0.865269 | 2 | 36 | 40 | 0.881003 | ||
0.15 | 0.050 | 4 | 193 | 199 | 0.864012 | 3 | 41 | 46 | 0.878209 | |
0.075 | 3 | 200 | 205 | 0.864015 | 2 | 43 | 47 | 0.878647 | ||
0.100 | 3 | 205 | 210 | 0.864002 | 2 | 44 | 48 | 0.878479 |
c1 | 0.925 | 0.95 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
α | β | p | m* | n* | TC | m* | n* | TC | ||
0.01 | 0.25 | 0.050 | 2 | 21 | 25 | 0.909725 | 2 | 9 | 13 | 0.927812 |
0.075 | 2 | 22 | 26 | 0.908972 | 2 | 9 | 13 | 0.928015 | ||
0.100 | 2 | 22 | 26 | 0.909158 | 2 | 9 | 13 | 0.92822 | ||
0.20 | 0.050 | 3 | 23 | 28 | 0.906423 | 2 | 10 | 14 | 0.925489 | |
0.075 | 2 | 25 | 29 | 0.906429 | 2 | 10 | 14 | 0.92569 | ||
0.100 | 2 | 25 | 29 | 0.906611 | 2 | 10 | 14 | 0.925894 | ||
0.15 | 0.050 | 3 | 27 | 32 | 0.903317 | 2 | 12 | 16 | 0.921503 | |
0.075 | 2 | 29 | 33 | 0.90355 | 2 | 12 | 16 | 0.921702 | ||
0.100 | 2 | 29 | 33 | 0.903728 | 2 | 12 | 16 | 0.921903 | ||
0.05 | 0.25 | 0.050 | 2 | 14 | 18 | 0.904044 | 2 | 6 | 10 | 0.921499 |
0.075 | 2 | 14 | 18 | 0.904221 | 2 | 6 | 10 | 0.921699 | ||
0.100 | 2 | 14 | 18 | 0.904399 | 2 | 6 | 10 | 0.9219 | ||
0.20 | 0.050 | 2 | 16 | 20 | 0.901514 | 2 | 7 | 11 | 0.918176 | |
0.075 | 2 | 16 | 20 | 0.901686 | 2 | 7 | 11 | 0.918373 | ||
0.100 | 2 | 17 | 21 | 0.900729 | 2 | 7 | 11 | 0.918571 | ||
0.15 | 0.050 | 2 | 20 | 24 | 0.897447 | 2 | 9 | 13 | 0.912881 | |
0.075 | 2 | 20 | 24 | 0.89761 | 2 | 9 | 13 | 0.913071 | ||
0.100 | 2 | 20 | 24 | 0.897775 | 2 | 9 | 13 | 0.913263 | ||
0.10 | 0.25 | 0.050 | 2 | 10 | 14 | 0.900971 | 1 | 6 | 9 | 0.921343 |
0.075 | 2 | 10 | 14 | 0.901141 | 1 | 6 | 9 | 0.921343 | ||
0.100 | 2 | 11 | 15 | 0.899556 | 1 | 6 | 9 | 0.921343 | ||
0.20 | 0.050 | 2 | 13 | 17 | 0.896243 | 1 | 7 | 10 | 0.918022 | |
0.075 | 2 | 13 | 17 | 0.896404 | 1 | 7 | 10 | 0.918022 | ||
0.100 | 2 | 13 | 17 | 0.896566 | 1 | 7 | 10 | 0.918022 | ||
0.15 | 0.050 | 2 | 15 | 19 | 0.893789 | 2 | 7 | 11 | 0.907841 | |
0.075 | 2 | 16 | 20 | 0.892863 | 2 | 7 | 11 | 0.908024 | ||
0.100 | 2 | 16 | 20 | 0.893017 | 2 | 7 | 11 | 0.908208 |
c1 | 0.875 | 0.90 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
α | β | p | m* | t* | n* | TC** | m* | t* | n* | TC** | ||
0.01 | 0.15 | 0.050 | 5 | 0.26 | 297 | 304.285 | 0.8696 | 4 | 0.28 | 58 | 64.127 | 0.8895 |
0.075 | 5 | 0.27 | 307 | 314.352 | 0.8696 | 3 | 0.35 | 61 | 66.052 | 0.8894 | ||
0.100 | 4 | 0.31 | 317 | 323.256 | 0.8696 | 3 | 0.36 | 62 | 67.093 | 0.8895 | ||
0.20 | 0.050 | 6 | 0.24 | 332 | 340.464 | 0.8686 | 4 | 0.28 | 66 | 72.118 | 0.8875 | |
0.075 | 5 | 0.27 | 345 | 352.343 | 0.8686 | 4 | 0.32 | 67 | 73.293 | 0.8876 | ||
0.100 | 4 | 0.32 | 356 | 362.263 | 0.8686 | 3 | 0.39 | 70 | 75.163 | 0.8876 | ||
0.25 | 0.050 | 6 | 0.25 | 377 | 385.484 | 0.8675 | 4 | 0.3 | 75 | 81.219 | 0.8856 | |
0.075 | 5 | 0.28 | 391 | 398.416 | 0.8675 | 4 | 0.32 | 77 | 83.271 | 0.8856 | ||
0.100 | 4 | 0.32 | 404 | 410.288 | 0.8675 | 4 | 0.33 | 79 | 85.317 | 0.8856 | ||
0.05 | 0.15 | 0.050 | 5 | 0.25 | 180 | 187.25 | 0.8679 | 3 | 0.34 | 37 | 42.018 | 0.8862 |
0.075 | 4 | 0.3 | 187 | 193.2 | 0.8679 | 3 | 0.34 | 38 | 43.006 | 0.8861 | ||
0.100 | 4 | 0.31 | 192 | 198.239 | 0.8679 | 3 | 0.38 | 38 | 43.142 | 0.8864 | ||
0.20 | 0.050 | 5 | 0.25 | 209 | 216.236 | 0.8668 | 3 | 0.36 | 43 | 48.084 | 0.8840 | |
0.075 | 5 | 0.28 | 215 | 222.415 | 0.8668 | 3 | 0.36 | 44 | 49.079 | 0.8840 | ||
0.100 | 4 | 0.31 | 223 | 229.223 | 0.8668 | 3 | 0.36 | 45 | 50.08 | 0.8840 | ||
0.25 | 0.050 | 5 | 0.25 | 245 | 252.254 | 0.8656 | 3 | 0.37 | 51 | 56.098 | 0.8817 | |
0.075 | 4 | 0.31 | 254 | 260.244 | 0.8656 | 3 | 0.37 | 52 | 57.12 | 0.8817 | ||
0.100 | 4 | 0.32 | 261 | 267.264 | 0.8656 | 3 | 0.38 | 53 | 58.143 | 0.8817 | ||
0.10 | 0.15 | 0.050 | 5 | 0.26 | 129 | 136.314 | 0.8666 | 3 | 0.34 | 27 | 32.019 | 0.8836 |
0.075 | 4 | 0.32 | 134 | 140.282 | 0.8666 | 3 | 0.33 | 28 | 32.978 | 0.8834 | ||
0.100 | 4 | 0.31 | 138 | 144.24 | 0.8666 | 3 | 0.36 | 28 | 33.067 | 0.8836 | ||
0.20 | 0.050 | 6 | 0.24 | 153 | 161.421 | 0.8653 | 3 | 0.38 | 32 | 37.139 | 0.8813 | |
0.075 | 4 | 0.3 | 160 | 166.195 | 0.8653 | 3 | 0.36 | 33 | 38.069 | 0.8811 | ||
0.100 | 4 | 0.31 | 164 | 170.26 | 0.8653 | 3 | 0.35 | 34 | 39.042 | 0.8810 | ||
0.25 | 0.050 | 5 | 0.25 | 185 | 192.275 | 0.8641 | 3 | 0.38 | 39 | 44.132 | 0.8788 | |
0.075 | 4 | 0.31 | 192 | 198.245 | 0.8641 | 3 | 0.37 | 40 | 45.104 | 0.8787 | ||
0.100 | 4 | 0.32 | 197 | 203.298 | 0.8641 | 3 | 0.36 | 41 | 46.093 | 0.8786 |
c1 | 0.925 | 0.95 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
α | β | p | m* | t* | n* | TC** | m* | t* | n* | TC** | ||
0.01 | 0.15 | 0.050 | 2 | 0.48 | 21 | 24.958 | 0.9097 | 2 | 0.52 | 8 | 12.047 | 0.9306 |
0.075 | 3 | 0.35 | 20 | 25.043 | 0.9095 | 2 | 0.55 | 8 | 12.108 | 0.9310 | ||
0.100 | 3 | 0.39 | 20 | 25.166 | 0.9099 | 2 | 0.61 | 8 | 12.22 | 0.9317 | ||
0.20 | 0.050 | 3 | 0.33 | 23 | 27.988 | 0.9064 | 2 | 0.46 | 10 | 13.919 | 0.9254 | |
0.075 | 3 | 0.36 | 23 | 28.065 | 0.9067 | 2 | 0.47 | 10 | 13.943 | 0.9256 | ||
0.100 | 3 | 0.4 | 23 | 28.192 | 0.9072 | 2 | 0.48 | 10 | 13.97 | 0.9259 | ||
0.25 | 0.050 | 3 | 0.37 | 26 | 31.111 | 0.9040 | 2 | 0.61 | 11 | 15.213 | 0.9245 | |
0.075 | 3 | 0.35 | 27 | 32.054 | 0.9036 | 2 | 0.48 | 12 | 15.954 | 0.9216 | ||
0.100 | 3 | 0.38 | 27 | 32.151 | 0.9040 | 2 | 0.49 | 12 | 15.978 | 0.9219 | ||
0.05 | 0.15 | 0.050 | 2 | 0.42 | 14 | 17.843 | 0.9042 | 1 | 0.74 | 7 | 9.736 | 0.9220 |
0.075 | 2 | 0.43 | 14 | 17.866 | 0.9044 | 1 | 0.74 | 7 | 9.736 | 0.9220 | ||
0.100 | 2 | 0.45 | 14 | 17.892 | 0.9044 | 1 | 0.74 | 7 | 9.736 | 0.9220 | ||
0.20 | 0.050 | 2 | 0.47 | 16 | 19.947 | 0.9014 | 2 | 0.45 | 7 | 10.906 | 0.9181 | |
0.075 | 2 | 0.49 | 16 | 19.987 | 0.9017 | 2 | 0.46 | 7 | 10.926 | 0.9183 | ||
0.100 | 2 | 0.52 | 16 | 20.042 | 0.9019 | 2 | 0.47 | 7 | 10.947 | 0.9185 | ||
0.25 | 0.050 | 2 | 0.51 | 19 | 23.014 | 0.8984 | 2 | 0.53 | 8 | 12.067 | 0.9155 | |
0.075 | 2 | 0.54 | 19 | 23.083 | 0.8988 | 2 | 0.55 | 8 | 12.1 | 0.9159 | ||
0.100 | 3 | 0.42 | 18 | 23.256 | 0.8987 | 2 | 0.57 | 8 | 12.137 | 0.9162 | ||
0.10 | 0.15 | 0.050 | 2 | 0.47 | 10 | 13.935 | 0.9009 | 2 | 0.54 | 4 | 8.085 | 0.9198 |
0.075 | 2 | 0.49 | 10 | 13.971 | 0.9011 | 2 | 0.56 | 4 | 8.126 | 0.9201 | ||
0.100 | 2 | 0.51 | 10 | 14.017 | 0.9013 | 2 | 0.59 | 4 | 8.173 | 0.9205 | ||
0.20 | 0.050 | 2 | 0.51 | 12 | 16.017 | 0.8977 | 2 | 0.56 | 5 | 9.113 | 0.9152 | |
0.075 | 2 | 0.54 | 12 | 16.084 | 0.8980 | 2 | 0.58 | 5 | 9.152 | 0.9156 | ||
0.100 | 2 | 0.44 | 13 | 16.885 | 0.8967 | 2 | 0.6 | 5 | 9.197 | 0.9159 | ||
0.25 | 0.050 | 2 | 0.49 | 15 | 18.99 | 0.8938 | 2 | 0.47 | 7 | 10.938 | 0.9078 | |
0.075 | 2 | 0.52 | 15 | 19.032 | 0.8940 | 2 | 0.48 | 7 | 10.957 | 0.9080 | ||
0.100 | 2 | 0.55 | 15 | 19.09 | 0.8943 | 2 | 0.49 | 7 | 10.977 | 0.9082 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.-F.; Liu, T.-H.; Lai, Y.-H.; Chang, W.-T. A Study on the Experimental Design for the Lifetime Performance Index of Rayleigh Lifetime Distribution under Progressive Type I Interval Censoring. Mathematics 2022, 10, 517. https://doi.org/10.3390/math10030517
Wu S-F, Liu T-H, Lai Y-H, Chang W-T. A Study on the Experimental Design for the Lifetime Performance Index of Rayleigh Lifetime Distribution under Progressive Type I Interval Censoring. Mathematics. 2022; 10(3):517. https://doi.org/10.3390/math10030517
Chicago/Turabian StyleWu, Shu-Fei, Tzu-Hsuan Liu, Yu-Hua Lai, and Wei-Tsung Chang. 2022. "A Study on the Experimental Design for the Lifetime Performance Index of Rayleigh Lifetime Distribution under Progressive Type I Interval Censoring" Mathematics 10, no. 3: 517. https://doi.org/10.3390/math10030517
APA StyleWu, S. -F., Liu, T. -H., Lai, Y. -H., & Chang, W. -T. (2022). A Study on the Experimental Design for the Lifetime Performance Index of Rayleigh Lifetime Distribution under Progressive Type I Interval Censoring. Mathematics, 10(3), 517. https://doi.org/10.3390/math10030517