A -Threshold Secret Image Sharing Scheme Based on a Non-Full Rank Linear Model
Abstract
:1. Introduction
2. -Threshold Secret Sharing Scheme Based on Non-Full Rank Linear Model
2.1. Non-Full Rank Linear Model over a Finite Integer Field
2.2. . -Threshold Secret Sharing Scheme Based on the Non-Full Rank Linear Model
2.2.1. Setup
2.2.2. Share Generation
2.2.3. Secret Extraction with Authentication
2.3. Demonstration
2.3.1. Particular and Homogeneous Solutions
2.3.2. Share Generation
2.3.3. Authentication
2.3.4. Secret Recovery
3. -Threshold Secret Image Sharing Scheme Based on Linear Model
3.1. System Overview
3.2. Setup
3.3. Shadow Image Generation
3.4. Secret Data Extraction with Authentication
3.5. Demonstration
4. Experimental Results and Discussions
4.1. Demonstration of Applicability
4.1.1. (2,4)-Threshold Secret Image Sharing Scheme
4.1.2. (3,5)-Threshold Secret Image Sharing Scheme
4.2. Performance Evaluation
4.3. Security Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Zhang, W.; Wong, K.W.; Yu, H. A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 2011, 181, 1171–1186. [Google Scholar] [CrossRef]
- Chan, K.C.; Cheng, L.M. Hiding data in images by simple LSB substitution. Pattern Recognit. 2004, 37, 469–474. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S. Efficient steganographic embedding by exploiting modification direction. IEEE Commun. Lett. 2006, 10, 781–783. [Google Scholar] [CrossRef]
- Tian, J. Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 2003, 13, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Ni, Z.; Shi, Y.Q.; Ansari, N.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–361. [Google Scholar] [CrossRef]
- Chang, C.C. Neural Reversible steganography with long short-term memory. Secur. Commun. Netw. 2021, 2021, 5580272. [Google Scholar] [CrossRef]
- Chang, C.C.; Li, C.T.; Shi, Y.Q. Privacy-Aware reversible watermarking in cloud computing environments. IEEE Access 2018, 6, 70720–70733. [Google Scholar] [CrossRef]
- Naor, M.; Shamir, A. Visual cryptography. Lect. Notes Comput. Sci. 1995, 950, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, M.; Yamaguchi, Y. Extended visual cryptography for natural images. WSCG 2002, 10, 303–310. [Google Scholar] [CrossRef]
- Patil, S.; Rao, J. Extended visual cryptography for color shares using random number generators. Int. J. Adv. Res. Comput. Commun. Eng. 2012, 1, 399–410. [Google Scholar]
- Blundo, C.; De Santis, A.; Naor, M. Visual cryptography for grey level images. Inf. Process. Lett. 2000, 75, 255–259. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, G.; Wang, Y.G.; Yang, J.; Kwong, S. A Novel (t, s, k, n)-Threshold Visual Secret Sharing Scheme Based on Access Structure Partition. ACM Trans. Multimed. Comput. Commun. Appl. 2021, 16, 1–21. [Google Scholar] [CrossRef]
- Ulutas, M.; Ulutas, G.; Nabiyev, V.V. Medical image security and EPR hiding using Shamir’s secret sharing scheme. J. Syst. Softw. 2011, 84, 341–353. [Google Scholar] [CrossRef]
- Charoghchi, S.; Mashhadi, S. Three (t,n)-secret image sharing schemes based on homogeneous linear recursion. Inf. Sci. 2021, 552, 220–243. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C. Scalable secret image sharing scheme with essential shadows. Signal Process. Image Commun. 2017, 58, 49–55. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Pan, Z.; Zhong, X.; Yang, G. Multiparty verification in image secret sharing. Inf. Sci. 2021, 562, 475–490. [Google Scholar] [CrossRef]
- Ding, W.; Liu, K.; Yan, X.; Liu, L. Polynomial-based secret image sharing scheme with fully lossless recovery. Int. J. Digit. Crime Forensics 2018, 10, 120–136. [Google Scholar] [CrossRef]
- Liu, L.; Lu, Y.; Yan, X.; Ding, W.; Xuan, Q. A Lossless Polynomial-Based Secret Image Sharing Scheme Utilizing the Filtering Operation. Adv. Intell. Syst. Comput. 2020, 895, 129–139. [Google Scholar] [CrossRef]
- Chang, C.-C.; Kieu, T.; Chou, Y.-C. Reversible data hiding scheme using two steganographic images. In Proceedings of the TENCON 2007–2007 IEEE Region 10 Conference, Taipei, Taiwan, 30 October–2 November 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Chen, S.; Chang, C.C. Reversible data hiding based on three shadow images using rhombus magic matrix. J. Vis. Commun. Image Represent. 2021, 76, 103064. [Google Scholar] [CrossRef]
- Qin, C.; Chang, C.C.; Hsu, T.J. Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimed. Tools Appl. 2015, 74, 5861–5872. [Google Scholar] [CrossRef]
- Lin, P.Y.; Lee, J.S.; Chang, C.C. Distortion-free secret image sharing mechanism using modulus operator. Pattern Recognit. 2009, 42, 886–895. [Google Scholar] [CrossRef]
- Lin, P.Y.; Chan, C.S. Invertible secret image sharing with steganography. Pattern Recognit. Lett. 2010, 31, 1887–1893. [Google Scholar] [CrossRef]
- Yadav, M.; Singh, R. Essential secret image sharing approach with same size of meaningful shares. Multimed. Tools Appl. 2021. [Google Scholar] [CrossRef]
- Gao, K.; Horng, J.H.; Chang, C.C. A novel (2, 3) reversible secret image sharing based on fractal matrix. IEEE Access 2020, 8, 174325–174341. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, Y.H.; Wang, H.C. Meaningful secret sharing technique with authentication and remedy abilities. Inf. Sci. 2011, 181, 3073–3084. [Google Scholar] [CrossRef]
- Gao, K.; Horng, J.H.; Chang, C.C. An authenticatable (2, 3) secret sharing scheme using meaningful share images based on hybrid fractal matrix. IEEE Access 2021, 9, 50112–50125. [Google Scholar] [CrossRef]
- Fridrich, J.; Goljan, M.; Du, R. Reliable detection of LSB steganography in color and grayscale images. In Proceedings of the 2001 Workshop on Multimedia and Security: New Challenges, Ottawa, ON, Canada, 5 October 2001; pp. 27–30. [Google Scholar] [CrossRef]
- Cachin, C. An information-theoretic model for steganography. Lect. Notes Comput. Sci. 1998, 1525, 306–318. [Google Scholar] [CrossRef]
- Arabia, S. Pixel-Value Differencing Steganography: Attacks and Improvements. In Proceedings of the ICCIT 2012, Chittagong, Bangladesh, 22–24 December 2012; pp. 757–762. [Google Scholar]
- Joo, J.C.; Lee, H.Y.; Bui, C.N.; Yoo, W.Y.; Lee, H.K. Steganalytic measures for the steganography using pixel-value differencing and modulus function. Lect. Notes Comput. Sci. 2008, 5353 LNCS, 476–485. [Google Scholar] [CrossRef]
r | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
p | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
3 | 59.89 | 56.88 | 55.12 | 53.87 | 52.90 | 52.11 | 51.44 | 50.86 | 50.35 | 49.89 |
5 | 55.12 | 52.11 | 50.35 | 49.10 | 48.13 | 47.348 | 46.67 | 46.09 | 45.58 | 45.12 |
7 | 52.11 | 49.10 | 47.34 | 46.09 | 45.12 | 44.33 | 43.66 | 43.08 | 42.57 | 42.11 |
11 | 48.13 | 45.12 | 43.36 | 42.11 | 41.14 | 40.35 | 39.68 | 39.10 | 38.59 | 38.13 |
Half Embedded | Fully Embedded | |||||
---|---|---|---|---|---|---|
Cover Images | ||||||
Baboon | 7.3579 | 7.3543 | 0.0049 | 7.3579 | 7.3415 | 0.0185 |
Boat | 7.1914 | 7.2050 | 0.0052 | 7.1914 | 7.2129 | 0.0184 |
Lena | 7.4455 | 7.4482 | 0.0007 | 7.4455 | 7.4510 | 0.0014 |
Peppers | 7.5944 | 7.5978 | 0.0006 | 7.5944 | 7.5998 | 0.0021 |
Goldhill | 7.4778 | 7.4839 | 0.0036 | 7.4778 | 7.4829 | 0.0058 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horng, J.-H.; Chen, S.-S.; Chang, C.-C.
A
Horng J-H, Chen S-S, Chang C-C.
A
Horng, Ji-Hwei, Si-Sheng Chen, and Chin-Chen Chang.
2022. "A
Horng, J.-H., Chen, S.-S., & Chang, C.-C.
(2022). A