A Surrogate Measure for Time-Varying Biomarkers in Randomized Clinical Trials
Abstract
:1. Introduction
2. The Time-Varying F-Measure
2.1. Definition
2.2. Estimation and Inference
2.3. Ranges of F-Measure
2.3.1. Perfect Marker
2.3.2. Useless Marker
2.3.3. Partial Marker
- C1.
- .
- C2.
- and is increasing with
- C3.
- and is decreasing with
2.4. Causal Interpretation
3. Numerical Studies
3.1. Numerical Examples
3.2. Monte–Carlo Simulation
4. Data Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Theorem 1
Appendix B. Proof of Theorem 2
Appendix C. Proof of Theorem 3
Appendix D. F-Measure under the Time-Varying Cox–Weibull Model
References
- FDA. New drug, antibiotic and biological drug product regulations: Accelerated approval. Fed. Regist. 1992, 57, 13234–13242. [Google Scholar]
- Baker, S.G.; Kramer, B.S. A perfect correlate does not a surrogate make. BMC Med. Res. Methodol. 2003, 3, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, T.R.; Powers, J.H. Biomarkers and surrogate endpoints in clinical trials. Stat. Med. 2012, 31, 2973–2984. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, R.; Chen, Y.Q. Measuring Surrogacy in Clinical Research. Stat. Biosci. 2020, 12, 295–323. [Google Scholar] [CrossRef] [PubMed]
- Prentice, R.L. Surrogate endpoints in clinical trials: Definition and operational criteria. Stat. Med. 1989, 8, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Freedman, L.S.; Graubard, B.I.; Schatzkin, A. Statistical validation of intermediate endpoints for chronic diseases. Stat. Med. 1992, 11, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.Y.; Fleming, T.R.; De Gruttola, V. Estimating the proportion of treatment effect explained by a surrogate marker. Stat. Med. 1997, 16, 1515–1527. [Google Scholar] [CrossRef]
- Bycott, P.W.; Taylor, J.M. An evaluation of a measure of the proportion of the treatment effect explained by a surrogate marker. Control. Clin. Trials 1998, 19, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Taylor, J.M. A measure of the proportion of treatment effect explained by a surrogate marker. Biometrics 2002, 58, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Robins, J.M.; Greenland, S. Identifiability and exchangeability for direct and indirect effects. Epidemiology 1992, 3, 143–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearl, J. Direct and indirect effects. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA, USA, 2–5 August 2001; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2001; pp. 411–420. [Google Scholar]
- Taylor, J.M.; Wang, Y.; Thiébaut, R. Counterfactual Links to the Proportion of Treatment Effect Explained by a Surrogate Marker. Biometrics 2005, 61, 1102–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, P.C. Generating survival times to simulate Cox proportional hazards models with time-varying covariates. Stat. Med. 2012, 31, 3946–3958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.S.; Chen, Y.Q.; McCauley, M.; Gamble, T.; Hosseinipour, M.C.; Kumarasamy, N.; Hakim, J.G.; Kumwenda, J.; Grinsztejn, B.; Pilotto, J.H.; et al. Antiretroviral therapy for the prevention of HIV-1 transmission. N. Engl. J. Med. 2016, 375, 830–839. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.S.; Elashoff, M.R.; Iacono-Connors, L.C.; Cvetkovich, T.A.; Struble, K.A. The use of plasma HIV RNA as a study endpoint in efficacy trials of antiretroviral drugs. Aids 1999, 13, 797–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, T.R.; Harrington, D.P. Counting Processes and Survival Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 169. [Google Scholar]
c = 5, v = 0.8 | ||||||
Scenario | Marker time | True value | Bias | Sampling SE | Mean of SE | Coverage |
Perfect | 0.25 | 0.747 | 0.003 | 0.052 | 0.051 | 0.941 |
0.5 | 0.932 | 0.002 | 0.054 | 0.055 | 0.956 | |
1 | 0.995 | 0.003 | 0.059 | 0.059 | 0.953 | |
2 | 1.000 | 0.007 | 0.081 | 0.080 | 0.948 | |
Useless | 0.25 | 0.000 | 0.001 | 0.034 | 0.034 | 0.948 |
0.5 | 0.000 | 0.001 | 0.031 | 0.030 | 0.951 | |
1 | 0.000 | 0.001 | 0.023 | 0.023 | 0.949 | |
2 | 0.000 | 0.001 | 0.017 | 0.016 | 0.944 | |
Partial | 0.25 | 0.197 | 0.003 | 0.051 | 0.051 | 0.955 |
0.5 | 0.229 | 0.001 | 0.047 | 0.047 | 0.953 | |
1 | 0.213 | 0.002 | 0.038 | 0.037 | 0.952 | |
2 | 0.167 | 0.003 | 0.030 | 0.030 | 0.957 | |
c = 5, v = 1 | ||||||
Scenario | Marker time | True value | Bias | Sampling SE | Mean of SE | Coverage |
Perfect | 0.25 | 0.743 | 0.002 | 0.043 | 0.044 | 0.951 |
0.5 | 0.931 | 0.002 | 0.044 | 0.046 | 0.954 | |
1 | 0.995 | 0.002 | 0.047 | 0.048 | 0.949 | |
2 | 1.000 | 0.004 | 0.062 | 0.063 | 0.945 | |
Useless | 0.25 | 0.000 | 0.001 | 0.033 | 0.034 | 0.964 |
0.5 | 0.000 | 0.000 | 0.030 | 0.030 | 0.958 | |
1 | 0.000 | 0.000 | 0.022 | 0.022 | 0.954 | |
2 | 0.000 | 0.001 | 0.015 | 0.016 | 0.954 | |
Partial | 0.25 | 0.204 | 0.002 | 0.051 | 0.051 | 0.951 |
0.5 | 0.241 | 0.000 | 0.046 | 0.046 | 0.953 | |
1 | 0.228 | 0.000 | 0.036 | 0.036 | 0.960 | |
2 | 0.181 | 0.001 | 0.028 | 0.029 | 0.951 | |
c = 5, v = 1.2 | ||||||
Scenario | Marker time | True value | Bias | Sampling SE | Mean of SE | Coverage |
Perfect | 0.25 | 0.742 | 0.002 | 0.036 | 0.036 | 0.949 |
0.5 | 0.930 | 0.002 | 0.036 | 0.037 | 0.956 | |
1 | 0.995 | 0.001 | 0.037 | 0.038 | 0.952 | |
2 | 1.000 | 0.003 | 0.049 | 0.048 | 0.940 | |
Useless | 0.25 | 0.000 | 0.001 | 0.037 | 0.037 | 0.953 |
0.5 | 0.000 | 0.000 | 0.032 | 0.032 | 0.955 | |
1 | 0.000 | 0.000 | 0.023 | 0.023 | 0.943 | |
2 | 0.000 | 0.000 | 0.016 | 0.016 | 0.953 | |
Partial | 0.25 | 0.219 | 0.003 | 0.055 | 0.054 | 0.948 |
0.5 | 0.262 | 0.000 | 0.049 | 0.049 | 0.956 | |
1 | 0.252 | 0.000 | 0.037 | 0.038 | 0.947 | |
2 | 0.203 | 0.001 | 0.030 | 0.030 | 0.952 |
Marker Time | Delayed ART Arm | Immediate ART Arm | F-Measure | |||
---|---|---|---|---|---|---|
Prevalence of | Hazard Ratio | Prevalence of | Hazard Ratio | Estimator | 95% CI | |
Viral Load | Viral Load | |||||
2 | 0.88 | 1.39 | 0.08 | 2.20 | 0.18 | −0.03, 0.39 |
3 | 0.88 | 0.94 | 0.08 | 3.21 * | 0.41 | 0.13, 0.70 |
4 | 0.87 | 1.00 | 0.09 | 4.49 * | 0.52 | 0.09, 0.95 |
5 | 0.85 | 1.59 | 0.08 | 5.59 * | 0.72 | 0.10, 1.34 |
6 | 0.81 | 2.51 * | 0.07 | 4.49 * | 1.12 | −0.42, 2.67 |
7 | 0.75 | 2.11 | 0.08 | 6.55 * | 0.81 | −0.92, 2.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, R.; Xia, F.; Wang, Y.; Chen, Y.-Q. A Surrogate Measure for Time-Varying Biomarkers in Randomized Clinical Trials. Mathematics 2022, 10, 584. https://doi.org/10.3390/math10040584
Zhuang R, Xia F, Wang Y, Chen Y-Q. A Surrogate Measure for Time-Varying Biomarkers in Randomized Clinical Trials. Mathematics. 2022; 10(4):584. https://doi.org/10.3390/math10040584
Chicago/Turabian StyleZhuang, Rui, Fan Xia, Yixin Wang, and Ying-Qing Chen. 2022. "A Surrogate Measure for Time-Varying Biomarkers in Randomized Clinical Trials" Mathematics 10, no. 4: 584. https://doi.org/10.3390/math10040584
APA StyleZhuang, R., Xia, F., Wang, Y., & Chen, Y.-Q. (2022). A Surrogate Measure for Time-Varying Biomarkers in Randomized Clinical Trials. Mathematics, 10(4), 584. https://doi.org/10.3390/math10040584