Liouville-Type Results for a Two-Dimensional Stretching Eyring–Powell Fluid Flowing along the z-Axis
Abstract
:1. Introduction
2. Preliminaries
3. Statements of Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ara, A.; Khan, N.A.; Khan, H.; Sultan, F. Radiation effect on boundary layer flow of an Eyring–Powell fluid over an exponentially shrinking sheet. Ain-Shams Eng. J. 2014, 5, 1337–1342. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Iqbal, Z.; Qasim, M.; Obaidat, S. Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions. Int. J. Heat Mass Transf. 2012, 55, 1817–1822. [Google Scholar] [CrossRef]
- Hayat, T.; Awais, M.; Asghar, S. Radiative effects in a threedimensional flow of MHD Eyring-Powell fluid. J. Egypt Math. Soc. 2013, 21, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Akbar, N.S.; Ebaid, A.; Khan, Z.H. Numerical analysis of magnetic field on Eyring-Powell fluid flow towards a stretching sheet. J. Magn. Magn. Mater. 2015, 382, 355–358. [Google Scholar] [CrossRef]
- Jalil, M.; Asghar, S.; Imran, S.M. Self similar solutions for the flow and heat transfer of Powell-Eyring fluid over a moving surface in parallel free stream. Int. J. HeatMass Transf. 2013, 65, 73–79. [Google Scholar] [CrossRef]
- Khan, J.A.; Mustafa, M.; Hayat, T.; Farooq, M.A.; Alsaedi, A.; Liao, S.J. On model for three-dimensional flow of nanofluid: An application to solar energy. J. Mol. Liq. 2014, 194, 41–47. [Google Scholar] [CrossRef]
- Javed, T.; Ali, N.; Abbas, Z.; Sajid, M. Flow of an Eyring–Powell nonnewtonian fluid over a stretching sheet. Chem. Eng. Commun. 2013, 200, 327–336. [Google Scholar] [CrossRef]
- Riaz, A.; Ellahi, R.; Sait, S.M. Role of hybrid nanoparticles in thermal performance of peristaltic flow of Eyring–Powell fluid model. J. Therm. Anal. Calorim. 2021, 143, 1021–1035. [Google Scholar] [CrossRef]
- Malik, M.Y.; Hussain, A.; Nadeem, S. Boundary layer flow of an Eyring–Powell model fluid due to a stretching cylinder with variable viscosity. Sci. Iran. 2013, 20, 313–321. [Google Scholar]
- Bhatti, M.M.; Abbas, T.; Rashidi, M.M.; Ali, M.E.S.; Yang, Z. Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. Entropy 2016, 18, 224. [Google Scholar] [CrossRef] [Green Version]
- Umar, M.; Akhtar, R.; Sabir, Z.; Wahab, H.A.; Zhiyu, Z.; Imran, A.; Shoaib, M.; Raja, M.A.Z. Numerical Treatment for the Three-Dimensional Eyring-Powell Fluid Flow over a Stretching Sheet with Velocity Slip and Activation Energy. Adv. Math. Phys. 2019, 2019, 9860471. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Ashraf, B.; Shehzad, S.A.; Abouelmagd, E. Three-dimensional flow of Eyring Powell nanofluid over an exponentially stretching sheet. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 593–616. [Google Scholar] [CrossRef]
- Mallick, B.; Misra, J.C. Peristaltic flow of Eyring-Powell nanofluid under the action of an electromagnetic field. Eng. Sci. Technol. Int. J. 2019, 22, 266–281. [Google Scholar] [CrossRef]
- Chae, D.; Wolf, J. On Liouville-type Theorems for the Steady-Navier Stokes equations in R3. J. Differ, Eq. 2016, 261, 5541–5560. [Google Scholar] [CrossRef]
- Serogin, G. Liouville-type Theorems for the Stationary Navier-Stokes equations. Non-Lineartiy 2016, 29, 2191–2195. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, D.; Jarrin, O.; Lemarie-Rieusset, P.G. Some Liouvie Theorems for stationary Navier-Stokes equations in Lebesgue and Morrey Spaces. arXiv 2018, arXiv:1806.03003. [Google Scholar]
- Chae, D. Liouville-type theorems for the forced Euler equations and the Navier-Stokes equations. Commun. Math. Phys. 2014, 326, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Chae, D.; Yoneda, T. On the Liouville theorem for the stationary Navier-Stokes equations in a critical space. J. Math. Anal. Appl. 2013, 405, 706–710. [Google Scholar] [CrossRef]
- Koch, G.; Nadirashvili, N.; Seregin, G.A.; Sverak, V. Liouville theorems for the Navier-Stokes equations and applications. Acta Math. 2009, 203, 83–105. [Google Scholar] [CrossRef]
- Solonnikov, A. Estimates of the solutions of the nonstationary Navier-Stokes system. Boundary Value Problems of Mathematical Physics and Related Questions in the Theory of Functions, 7. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 1973, 38, 153–231. [Google Scholar]
- Li, Z.; Niu, P. Liouville type Theorems for the 3D stationary Hall-MHD equations. ZAMM-J. Appl. Math. Mech. 2020, 100, e201900200. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, J.L.; Rahman, S.u.; Nouman, M. Liouville-Type Results for a Two-Dimensional Stretching Eyring–Powell Fluid Flowing along the z-Axis. Mathematics 2022, 10, 631. https://doi.org/10.3390/math10040631
Díaz JL, Rahman Su, Nouman M. Liouville-Type Results for a Two-Dimensional Stretching Eyring–Powell Fluid Flowing along the z-Axis. Mathematics. 2022; 10(4):631. https://doi.org/10.3390/math10040631
Chicago/Turabian StyleDíaz, José L., Saeed ur Rahman, and Muhammad Nouman. 2022. "Liouville-Type Results for a Two-Dimensional Stretching Eyring–Powell Fluid Flowing along the z-Axis" Mathematics 10, no. 4: 631. https://doi.org/10.3390/math10040631
APA StyleDíaz, J. L., Rahman, S. u., & Nouman, M. (2022). Liouville-Type Results for a Two-Dimensional Stretching Eyring–Powell Fluid Flowing along the z-Axis. Mathematics, 10(4), 631. https://doi.org/10.3390/math10040631