SVseg: Stacked Sparse Autoencoder-Based Patch Classification Modeling for Vertebrae Segmentation
Abstract
:1. Introduction
Related Work
- To create the overlapping patches, spine CT images are divided into square patches of the same size. To address the issue of class imbalance, we generated a balanced training set using a random undersampling function for negative samples (nonvertebrae patches).
- Image patches are transformed into the matrix. The SVseg model is capable of learning high-level structural information from a large number of unlabeled image patches in an unsupervised way by SSAE. Thus, SSAE is capable of converting input pixel intensities to structured vertebrae or nonvertebrae representations.
- We constructed a four-layer SSAE architecture with a logistic regression classifier to fine-tune the model in a supervised manner. The results were produced in the form of a matrix containing values of 1 and 0, indicating whether or not the associated patches are vertebrae.
- We validated our proposed SVseg model on the publicly available MICCAI CSI dataset, which achieved the highest performance of 87.39% in DSC, 77.60% in JSC, 91.53% in PRE, and 90.88% in SEN, compared with classical segmentation approaches and well-known vertebral segmentation methods.
2. Methodology
2.1. Data Preprocessing
2.2. SVseg Model Pretraining
2.3. SSAE + SC for Supervised SVseg Model Designing
2.4. Testing
3. Experimental Setup
3.1. Dataset
3.2. Experiments
3.3. Evaluation Metrics
4. Results and Discussion
4.1. Computational Cost
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muñoz, H.E.; Yao, J.; Burns, J.E.; Summers, R.M. Detection of vertebral degenerative disc disease based on cortical shell unwrapping. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Novak, CL, USA, 29 March 2013; Aylward, S., Ed.; Volume 15, p. 86700C. [Google Scholar]
- Bourgeois, A.C.; Faulkner, A.R.; Pasciak, A.S.; Bradley, Y.C. The evolution of image-guided lumbosacral spine surgery. Ann. Transl. Med. 2015, 3, 69. [Google Scholar] [PubMed]
- Kim, G.-U.; Chang, M.C.; Kim, T.U.; Lee, G.W. Diagnostic modality in spine disease: A review. Asian Spine J. 2020, 14, 910. [Google Scholar] [CrossRef] [PubMed]
- Qadri, S.F.; Shen, L.; Ahmad, M.; Qadri, S.; Shamaila, S.; Khan, S. OP-convNet: A patch classification based framework for CT vertebrae segmentation. IEEE Access 2021, 9, 158227–158240. [Google Scholar] [CrossRef]
- Lim, P.H.; Bagci, U.; Bai, L. Introducing willmore flow into level set segmentation of spinal vertebrae. IEEE Trans. Biomed. Eng. 2013, 60, 115–122. [Google Scholar] [CrossRef]
- Huang, J.; Jian, F.; Wu, H.; Li, H. An improved level set method for vertebra CT image segmentation. Biomed. Eng. Online 2013, 12, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, J.; O’Connor, S.D.; Summers, R.M. Automated spinal column extraction and partitioning. In Proceedings of the Biomedical Imaging: Nano to Macro, Arlington, VA, USA, 6–9 April 2006; pp. 390–393. [Google Scholar]
- Naegel, B. Using mathematical morphology for the anatomical labeling of vertebrae from 3D CT-scan images. Comput. Med. Imaging Graph. 2007, 31, 141–156. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, D. A fully automatic vertebra segmentation method using 3D deformable fences. Comput. Med. Imaging Graph. 2009, 33, 343–352. [Google Scholar] [CrossRef]
- Mastmeyer, A.; Engelke, K.; Fuchs, C.; Kalender, W.A. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med. Image Anal. 2006, 10, 560–577. [Google Scholar] [CrossRef]
- Burnett, S.S.C.; Starkschall, G.; Stevens, C.W.; Liao, Z. A deformable-model approach to semi-automatic segmentation of CT images demonstrated by application to the spinal canal. Med. Phys. 2004, 31, 251–263. [Google Scholar] [CrossRef]
- Klinder, T.; Ostermann, J.; Ehm, M.; Franz, A.; Kneser, R.; Lorenz, C. Automated model-based vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 2009, 13, 471–482. [Google Scholar] [CrossRef]
- Ma, J.; Lu, L.; Zhan, Y.; Zhou, X.; Salganicoff, M.; Krishnan, A. Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Beijing, China, 20–24 September 2010; pp. 19–27. [Google Scholar]
- Rasoulian, A.; Rohling, R.; Abolmaesumi, P. Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model. IEEE Trans. Med. Imaging 2013, 32, 1890–1900. [Google Scholar] [CrossRef] [PubMed]
- Kadoury, S.; Labelle, H.; Paragios, N. Automatic inference of articulated spine models in CT images using high-order Markov Random Fields. Med. Image Anal. 2011, 15, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Ibragimov, B.; Likar, B.; Pernuš, F.; Vrtovec, T. Shape representation for efficient landmark-based segmentation in 3-D. IEEE Trans. Med. Imaging 2014, 33, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H. A novel segmentation method for cervical vertebrae based on PointNet++ and converge segmentation. Comput. Methods Programs Biomed. 2021, 200, 105798. [Google Scholar] [CrossRef] [PubMed]
- Tufail, A.B.; Ma, Y.-K.; Kaabar, M.K.A.; Rehman, A.U.; Khan, R.; Cheikhrouhou, O. Classification of Initial Stages of Alzheimer’s Disease through Pet Neuroimaging Modality and Deep Learning: Quantifying the Impact of Image Filtering Approaches. Mathematics 2021, 9, 3101. [Google Scholar] [CrossRef]
- Hirra, I.; Ahmad, M.; Hussain, A.; Usman Ashraf, M.; Saeed, I.A.; Qadri, S.F.; Alghamdi, A.M.; Alfakeeh, A.S. Breast Cancer Classification from Histopathological Images using Patch-based Deep Learning Modeling. IEEE Access 2021, 9, 24273–24287. [Google Scholar] [CrossRef]
- Pang, S.; Pang, C.; Zhao, L.; Chen, Y.; Su, Z.; Zhou, Y.; Huang, M.; Yang, W.; Lu, H.; Feng, Q. SpineParseNet: Spine Parsing for Volumetric MR Image by a Two-Stage Segmentation Framework with Semantic Image Representation. IEEE Trans. Med. Imaging 2021, 40, 262–273. [Google Scholar] [CrossRef]
- Masuzawa, N.; Kitamura, Y.; Nakamura, K.; Iizuka, S.; Simo-Serra, E. Automatic Segmentation, Localization, and Identification of Vertebrae in 3D CT Images Using Cascaded Convolutional Neural Networks. In Proceedings of the Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Lima, Peru, 4–8 October 2020; Volume 12266 LNCS, pp. 681–690. [Google Scholar]
- Chen, Y.; Gao, Y.; Li, K.; Zhao, L.; Zhao, J. Vertebrae Identification and Localization Utilizing Fully Convolutional Networks and a Hidden Markov Model. IEEE Trans. Med. Imaging 2020, 39, 387–399. [Google Scholar] [CrossRef]
- Ahmad, M.; Ai, D.; Xie, G.; Qadri, S.F.; Song, H.; Huang, Y.; Wang, Y.; Yang, J. Deep Belief Network Modeling for Automatic Liver Segmentation. IEEE Access 2019, 7, 20585–20595. [Google Scholar] [CrossRef]
- Ahmad, M.; Ding, Y.; Qadri, S.F.; Yang, J. Convolutional-neural-network-based feature extraction for liver segmentation from CT images. In Proceedings of the Eleventh International Conference on Digital Image Processing (ICDIP 2019), Guangzhou, China, 10–13 May 2019; Jiang, X., Hwang, J.-N., Eds.; Volume 1117934, p. 159. [Google Scholar]
- Sekuboyina, A.; Valentinitsch, A.; Kirschke, J.S.; Menze, B.H. A Localisation-Segmentation Approach for Multi-label Annotation of Lumbar Vertebrae using Deep Nets. arXiv 2017, arXiv:1703.04347. [Google Scholar]
- Korez, R.; Likar, B.; Pernuš, F.; Vrtovec, T. Model-based segmentation of vertebral bodies from MR images with 3D CNNs. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Greece, 17–21 October 2016; pp. 433–441. [Google Scholar]
- Yang, D.; Xiong, T.; Xu, D.; Huang, Q.; Liu, D.; Zhou, S.K.; Xu, Z.; Park, J.; Chen, M.; Tran, T.D.; et al. Automatic vertebra labeling in large-scale 3D CT using deep image-to-image network with message passing and sparsity regularization. In Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, NC, USA, 25–30 June 2017; pp. 633–644. [Google Scholar]
- Chen, H.; Shen, C.; Qin, J.; Ni, D.; Shi, L.; Cheng, J.C.Y.; Heng, P.-A. Automatic localization and identification of vertebrae in spine CT via a joint learning model with deep neural networks. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 515–522. [Google Scholar]
- Qadri, S.F.; Ai, D.; Hu, G.; Ahmad, M.; Huang, Y.; Wang, Y.; Yang, J. Automatic Deep Feature Learning via Patch-Based Deep Belief Network for Vertebrae Segmentation in CT Images. Appl. Sci. 2019, 9, 69. [Google Scholar] [CrossRef] [Green Version]
- Qadri, S.F.; Ahmad, M.; Ai, D.; Yang, J.; Wang, Y. Deep Belief Network Based Vertebra Segmentation for CT Images. In Proceedings of the Chinese Conference on Image and Graphics Technologies; Wang, Y., Wang, S., Liu, Y., Yang, J., Yuan, X., He, R., Duh, H.B.-L., Eds.; Springer: Singapore, 2018; Volume 757, pp. 536–545. [Google Scholar]
- Liu, X.; Yang, J.; Song, S.; Cong, W.; Jiao, P.; Song, H.; Ai, D.; Jiang, Y.; Wang, Y. Sparse intervertebral fence composition for 3D cervical vertebra segmentation. Phys. Med. Biol. 2018, 63, 115010. [Google Scholar] [CrossRef] [PubMed]
- Al Arif, S.M.M.R.; Knapp, K.; Slabaugh, G. Fully automatic cervical vertebrae segmentation framework for X-ray images. Comput. Methods Programs Biomed. 2018, 157, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, H.; Mesfin, A.; Luo, J. Joint vertebrae identification and localization in spinal CT images by combining short- and long-range contextual information. IEEE Trans. Med. Imaging 2018, 37, 1266–1275. [Google Scholar] [CrossRef] [Green Version]
- Türk, F.; Lüy, M.; Baricsçi, N. Kidney and Renal Tumor Segmentation Using a Hybrid V-Net-Based Model. Mathematics 2020, 8, 1772. [Google Scholar] [CrossRef]
- Abraham, B.; Nair, M.S. Computer-aided classification of prostate cancer grade groups from MRI images using texture features and stacked sparse autoencoder. Comput. Med. Imaging Graph. 2018, 69, 60–68. [Google Scholar] [CrossRef]
- Li, G.; Han, D.; Wang, C.; Hu, W.; Calhoun, V.D.; Wang, Y.P. Application of deep canonically correlated sparse autoencoder for the classification of schizophrenia. Comput. Methods Programs Biomed. 2020, 183, 105073. [Google Scholar] [CrossRef]
- Hou, L.; Nguyen, V.; Kanevsky, A.B.; Samaras, D.; Kurc, T.M.; Zhao, T.; Gupta, R.R.; Gao, Y.; Chen, W.; Foran, D.; et al. Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images. Pattern Recognit. 2019, 86, 188–200. [Google Scholar] [CrossRef]
- Li, S.; Jiang, H.; Bai, J.; Liu, Y.; Yao, Y.-D. Stacked sparse autoencoder and case-based postprocessing method for nucleus detection. Neurocomputing 2019, 359, 494–508. [Google Scholar] [CrossRef]
- Jia, W.; Muhammad, K.; Wang, S.H.; Zhang, Y.D. Five-category classification of pathological brain images based on deep stacked sparse autoencoder. Multimed. Tools Appl. 2019, 78, 4045–4064. [Google Scholar] [CrossRef]
- Qadri, S.F.; Zhao, Z.; Ai, D.; Ahmad, M.; Wang, Y. Vertebrae segmentation via stacked sparse autoencoder from computed tomography images. In Proceedings of the Eleventh International Conference on Digital Image Processing (ICDIP 2019), Guangzhou, China, 10–13 May 2019; Jiang, X., Hwang, J.-N., Eds.; p. 160. [Google Scholar]
- Adem, K.; Kiliçarslan, S.; Cömert, O. Classification and diagnosis of cervical cancer with softmax classification with stacked autoencoder. Expert Syst. Appl. 2019, 115, 557–564. [Google Scholar] [CrossRef]
- Ahmad, M.; Yang, J.; Ai, D.; Qadri, S.F.; Wang, Y. Deep-Stacked Auto Encoder for Liver Segmentation. In Proceedings of the Chinese Conference on Image and Graphics Technologies, Beijing, China, 30 June–1 July 2018; pp. 243–251. [Google Scholar]
- Xu, J.; Xiang, L.; Hang, R.; Wu, J. Stacked Sparse Autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology. IEEE Trans. Med. Imaging 2016, 35, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Gao, Y.; Shen, D. Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching. IEEE Trans. Med. Imaging 2016, 35, 1077–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, T.M.; Elmogy, M.; Sallam, E.-S. Diagnosis of Focal Liver Diseases Based on Deep Learning Technique for Ultrasound Images. Arab. J. Sci. Eng. 2017, 42, 3127–3140. [Google Scholar] [CrossRef]
- Qadri, S.F.; Awan, S.A.; Amjad, M.; Anwar, M.; Shehzad, S. Applications, challenges, security of wireless body area networks (WBANs) and functionality of IEEE 802.15.4/zigbee. Sci. Int. 2013, 25, 697–702. [Google Scholar]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Yao, J.; Burns, J.E.; Forsberg, D.; Seitel, A.; Rasoulian, A.; Abolmaesumi, P.; Hammernik, K.; Urschler, M.; Ibragimov, B.; Korez, R.; et al. A multi-center milestone study of clinical vertebral CT segmentation. Comput. Med. Imaging Graph. 2016, 49, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.-C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Ng, A. Sparse Autoencoder; CS294A Lecture Notes; Stanford Univ.: Stanford, CA, USA, 2011; Available online: https://web.stanford.edu/class/cs294a/sparseAutoencoder_2011new.pdf (accessed on 28 January 2022).
- Bengio, Y. Deep learning of representations for unsupervised and transfer learning. In Proceedings of the ICML Workshop on Unsupervised and Transfer Learning, Bellevue, WA, USA, 2 July 2012; pp. 17–36. [Google Scholar]
- Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Rota Bulo, S.; Kontschieder, P. Neural decision forests for semantic image labelling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 81–88. [Google Scholar]
- Suk, H.-I.; Shen, D. Deep learning-based feature representation for AD/MCI classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Berlin/Heidelberg, Germany, 22 September 2013; pp. 583–590. [Google Scholar]
- Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In Proceedings of the International Workshop on Artificial Neural Networks, Berlin/Heidelberg, Germany, 7 June 1995; pp. 195–201. [Google Scholar]
- Kang, Y.; Engelke, K.; Kalender, W.A. A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans. Med. Imaging 2003, 22, 586–598. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 609–616. [Google Scholar]
- Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Jaccard, P. Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaud. Sci. Nat. 1901, 37, 547–579. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Wang, Z.; Zhang, Z.; Voiculescu, I. RAR-U-NET: A Residual Encoder to Attention Decoder by Residual Connections Framework for Spine Segmentation Under Noisy Labels. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 21–25. [Google Scholar]
- Kolařík, M.; Burget, R.; Uher, V.; Říha, K.; Dutta, M. Optimized High Resolution 3D Dense-U-Net Network for Brain and Spine Segmentation. Appl. Sci. 2019, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Yi Voon, J.H.; Ma, D.; Dabiri, S.; Popuri, K.; Beg, M.F. Vertebra Segmentation for Clinical CT Images Using Mask R-CNN. In 8th European Medical and Biological Engineering Conference, Proceedings of the EMBEC 2020, Portorož, Slovenia, 29 November–3 December 2021; Springer: Cham, Switzerland, 2021; Volume 80, pp. 1156–1165. ISBN 9783030646097. [Google Scholar]
- Whitehead, W.; Moran, S.; Gaonkar, B.; Macyszyn, L.; Iyer, S. A deep learning approach to spine segmentation using a feed-forward chain of pixel-wise convolutional networks. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; Volume 2018, pp. 868–871. [Google Scholar]
- Lyu, J.; Bi, X.; Banerjee, S.; Huang, Z.; Leung, F.H.F.; Lee, T.T.-Y.; Yang, D.-D.; Zheng, Y.-P.; Ling, S.H. Dual-task ultrasound spine transverse vertebrae segmentation network with contour regularization. Comput. Med. Imaging Graph. 2021, 89, 101896. [Google Scholar] [CrossRef] [PubMed]
- Sekuboyina, A.; Kukačka, J.; Kirschke, J.S.; Menze, B.H.; Valentinitsch, A. Attention-driven deep learning for pathological spine segmentation. In Proceedings of the International Workshop and Challenge on Computational Methods and Clinical Applications in Musculoskeletal Imaging, Quebec City, QC, Canada, 10 September 2017; pp. 108–119. [Google Scholar]
- Van Opbroek, A.; Ikram, M.A.; Vernooij, M.W.; De Bruijne, M. Transfer learning improves supervised image segmentation across imaging protocols. IEEE Trans. Med. Imaging 2015, 34, 1018–1030. [Google Scholar] [CrossRef] [Green Version]
Methods | DSC (%) | JSC (%) | PRE (%) | SEN (%) |
---|---|---|---|---|
AE + SC | 78.91 | 65.17 | 82.57 | 79.61 |
StAE + SC | 83.39 | 71.51 | 88.17 | 85.71 |
SAE + SC | 81.41 | 69.65 | 85.83 | 78.63 |
3SAE + SC | 85.12 | 74.09 | 90.59 | 88.41 |
4SAE + SC | 84.73 | 73.51 | 85.33 | 90.13 |
SVseg (proposed) | 87.39 | 77.60 | 91.53 | 90.88 |
Methods | Training Time (h) | Segmentation Time (s) |
---|---|---|
AE + SC | 21.05 | 16 |
StAE + SC | 22.16 | 19 |
SAE + SC | 23.07 | 13 |
3SAE + SC | 26.47 | 23 |
4SAE + SC | 37.22 | 23 |
SVseg Model | 22.35 | 12 |
Methods | Backbone | DSC (%) | (JSC) (%) |
---|---|---|---|
Classical U-Net [62] | U-Net | 83.60 | 71.82 |
DeepLabv3+ [63] | DeepLabv3+ | 73.53 | 58.14 |
MultiResUNet [64] | U-Net | 85.42 | 74.55 |
Densely-UNet [65] | 3DU-Net | 83.16 | 71.17 |
SpineParseNet [20] | 3D-GCSN, 2DResUNet | 87.32 | 77.49 |
Mask R-CNN [66] | ResNet 101 | 69.20 | 53.15 |
Multiscale CNN [67] | FCN | 86.50 | 74.67 |
D-TVNet [68] | U-Net | 86.68 | 76.49 |
PaDBN [29] | DBN | 86.10 | 75.59 |
S. Al Arif et al. [32] | U-Net | 84.00 | 72.41 |
A. Sekuboyina et al. [69] | U-Net | 87.00 | 76.99 |
SVseg Model (proposed) | SSAE | 87.39 | 77.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qadri, S.F.; Shen, L.; Ahmad, M.; Qadri, S.; Zareen, S.S.; Akbar, M.A. SVseg: Stacked Sparse Autoencoder-Based Patch Classification Modeling for Vertebrae Segmentation. Mathematics 2022, 10, 796. https://doi.org/10.3390/math10050796
Qadri SF, Shen L, Ahmad M, Qadri S, Zareen SS, Akbar MA. SVseg: Stacked Sparse Autoencoder-Based Patch Classification Modeling for Vertebrae Segmentation. Mathematics. 2022; 10(5):796. https://doi.org/10.3390/math10050796
Chicago/Turabian StyleQadri, Syed Furqan, Linlin Shen, Mubashir Ahmad, Salman Qadri, Syeda Shamaila Zareen, and Muhammad Azeem Akbar. 2022. "SVseg: Stacked Sparse Autoencoder-Based Patch Classification Modeling for Vertebrae Segmentation" Mathematics 10, no. 5: 796. https://doi.org/10.3390/math10050796
APA StyleQadri, S. F., Shen, L., Ahmad, M., Qadri, S., Zareen, S. S., & Akbar, M. A. (2022). SVseg: Stacked Sparse Autoencoder-Based Patch Classification Modeling for Vertebrae Segmentation. Mathematics, 10(5), 796. https://doi.org/10.3390/math10050796