Adaptation Process of the Mathematic Self-Efficacy Survey (MSES) Scale to Mexican-Spanish Language
Abstract
:1. Introduction
1.1. Purpose
1.2. Framework
1.3. Self-Efficacy in Mathematics
1.4. Assessing Mathematics Self-Efficacy
2. Materials and Methods
2.1. Participants
2.1.1. First Sample
2.1.2. Second Sample
2.2. Instrument
2.3. Translation
2.4. Verified Translation
2.5. Exploratory Factor Analyses
2.6. Replicability
3. Results
3.1. Normality Analysis
3.2. Exploratory Factor Analysis
3.3. Replicability
4. Discussion
Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Q1 | Determinar cuánto pagarás de interés por un préstamo de $675 en dos años con un interés de 14.75% anual. | |
Q2 | Calcular la cantidad de madera que necesitas comprar para construir dos libreros de 2 mts. de alto y 1 mt. de ancho. | |
Q3 | Calcular los impuestos que tendrías que pagar en un año de trabajo dependiendo de tu ingreso anual (30% de ISR). | |
Q4 | Calcular cuánta tela necesitas comprar para hacer cortinas para dos ventanas cuadradas iguales de 1.5 mts. de cada lado. | |
Q5 | Calcular cuánto interés ganarás con tu cuenta de ahorros en 6 meses, y analizar cómo ese interés es calculado. | |
Q6 | Estimar el costo total de tu mandado en tu cabeza conforme tomas los artículos. | |
Q7 | Determinar el monto del impuesto por ventas (IVA 16%) en una compra de ropa. | |
Q8 | Determinar la cantidad de propina correspondiente a tu parte de una cuenta de restaurante dividida entre ocho personas. | |
Q9 | Establecer un presupuesto mensual para ti mismo. | |
Q10 | Balancear tus gastos y tus ingresos semanales sin equivocación. | |
Q11 | Determinar cuál de dos empleos de verano es la mejor oferta; uno con un salario mayor pero sin prestaciones, el otro con un salario menor más gastos de hospedaje, manutención y transporte. | |
Q12 | Calcular cuánto ahorrarías si hay un 15% de descuento en un artículo que deseas comprar. | |
Q13 | Calcular las cantidades de una receta para una cena para 41 personas cuando la receta original es para 12 personas. | |
Q14 * | Bioquímica | |
Q15 * | Ciencias de la Computación | |
Q16 * | Fisiología | |
Q17 * | Economía | |
Q18 * | Zoología | |
Q19 * | Contabilidad | |
Q20 * | Filosofía | |
Q21 * | Administración de Empresas | |
Q22 | En villa estrella, una operación Ѳ con dos variables a y b está definida por a Ѳ b = a x (a + b). Por lo tanto, 2 Ѳ 3 es igual a __________ | |
Q23 | Sally necesita tres piezas de cartulina para un proyecto escolar. Si las piezas están representadas por los rectángulos A, B, y C, acomoda sus áreas en orden creciente (asume que b > a). | |
Q24 | El promedio de tres números es 30. El cuarto número es por lo menos 10. ¿Cuál es el promedio mínimo de los cuatro números? | |
Q25 | Para construir una mesa, Michele necesita 4 piezas de madera de 2.5 pies de longitud para las patas. Desea determinar cuánta madera necesita para 5 mesas. Razona de la siguiente manera: 5 × (4 × 2.5) = (5 × 4) 2.5. ¿Qué propiedad de los números reales está utilizando? | |
Q26 | Cinco puntos se encuentran en una línea. T está a un lado de G. K está a un lado de H. C está a un lado de T. H está a un lado de G. Determina el orden de aparición de estos cinco puntos sobre la línea. | |
Q27 | Hay tres números. El segundo es el doble del primero, y el primero es un tercio del otro número. La suma de los tres es 48. Encuentra el número más grande. | |
Q28 | En cierto triángulo, el lado más corto es de 6 pulgadas, el lado más largo es el doble de largo que el más corto, y el tercer lado es 3.4 pulgadas más corto que el lado más largo. ¿Cuál es la suma de los tres lados en pulgadas? | |
Q29 | Las manecillas de un reloj forman un ángulo obtuso cuando marca las ____ en punto. (Considera que hay más de una respuesta correcta). | |
Q30 | Bridget compra un paquete que contiene estampillas de 9 centavos y de 13 centavos por $2.65. Si hay 25 estampillas en el paquete, ¿cuántas estampillas de 13 centavos hay en el paquete? | |
Q31 | Escribe una ecuación que exprese la condición “el producto de dos números R y S es uno menos que el doble de la suma de ambos”. | |
Q32 | ”. | |
Q33 | pulgadas? | |
Q34 | C + 32. ¿Cuántos grados Fahrenheit son 20 grados centígrados? | |
Q35 | = | |
Q36 | Si 3X – 2 = 16, ¿cuál es el valor de X? | |
Q37 | La cuenta de Fred para algunos artículos para el hogar fue de $13.64. Si el pagó con un billete de 20, ¿cuánto le deben dar de cambio? |
References
- Committee on STEM Education. Federal Science, Technology, Engineering, and Mathematics (STEM) Education. 2013. Available online: https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/stem_stratplan_2013.pdf (accessed on 24 September 2019).
- Thomas, B.; Watters, J.J. Perspectives on Australian, Indian and Malaysian approaches to STEM education. Int. J. Educ. Dev. 2015, 45, 42–53. [Google Scholar] [CrossRef] [Green Version]
- Gobierno de la República. Plan Nacional de Desarrollo 2019–2024. 2019. Available online: https://lopezobrador.org.mx/wp-content/uploads/2019/05/PLAN-NACIONAL-DE-DESARROLLO-2019-2024.pdf (accessed on 5 May 2020).
- English, L.D. STEM education K-12: Perspectives on integration. Int. J. STEM Educ. 2016, 3, 1–8. [Google Scholar] [CrossRef]
- Shaughnessy, M. Mathematics in a STEM context. Math. Teach. Middle Sch. 2013, 18, 324. [Google Scholar]
- Ejiwale, J.A. Barriers to successful implementation of STEM education. J. Educ. Learn. 2013, 7, 63. [Google Scholar] [CrossRef] [Green Version]
- Rozgonjuk, D.; Kraav, T.; Mikkor, K.; Orav-puurand, K.; Täht, K. Mathematics anxiety among STEM and social sciences students: The roles of mathematics self-efficacy, and deep and surface approach to learning. Int. J. STEM Educ. 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Fitzallen, N. STEM education: What does mathematics have to offer? In Proceedings of the 38th Annual Conference of the Mathematics Education Research Group of Australasia, Hobart, TAS, Australia, 3–7 July 2015; Volume 1, pp. 237–244. [Google Scholar]
- Maltese, A.V.; Tai, R.H. Pipeline persistence: Examining the association of educational experiences with earned degrees in STEM among U.S. students. Sci. Educ. 2011, 95, 877–907. [Google Scholar] [CrossRef]
- Trusty, J. Effects of high school course-taking and other variables on choice of science and mathematics college majors. J. Couns. Dev. 2002, 80, 464–474. [Google Scholar] [CrossRef]
- Tyson, W.; Lee, R.; Borman, K.M.; Hanson, M.A. Science, technology, engineering, and mathematics (STEM) pathways: High school science and math coursework and postsecondary degree attainment. J. Educ. Stud. Placed Risk 2007, 12, 243–270. [Google Scholar] [CrossRef]
- Rose, H.; Betts, J.R. Math Matters: The Links between High School Curriculum, College Graduation, and Earnings; Public Policy Institute of California: San Francisco, CA, USA, 2001. [Google Scholar]
- Moore, T.J.; Stohlmann, M.S.; Wang, H.H.; Tank, K.M.; Glancy, A.W.; Roehrig, G.H. Implementation and integration of engineering in K-12 STEM education. In Engineering in Pre-College Settings: Synthesizing Research, Policy, and Practices; Purdue University Press: West Lafayette, IA, USA, 2014; pp. 35–60. [Google Scholar]
- Brown, S.; Burnham, J. Engineering student’s mathematics self-efficacy development in a freshmen engineering mathematics ourse. Int. J. Eng. Educ. 2012, 28, 113–129. [Google Scholar]
- Hackett, G. Role of mathematics self-efficacy in the choice of math-related majors of college women and men: A path analysis. J. Couns. Psychol. 1985, 32, 47–56. [Google Scholar] [CrossRef]
- Lent, R.W.; Brown, S.D.; Hackett, G. Toward a unifying social cognitive theory of career and academic interest, choice, and performance. J. Vocat. Behav. 1994, 45, 79–122. [Google Scholar] [CrossRef]
- Mau, W.C. Factors that influence persistence in science and engineering career aspirations. Career Dev. Q. 2003, 51, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Bandura, A. Social Foundations of Thought and Action: A Social Cognitive Theory; Prentice Hall: Englewood Cliffs, NJ, USA, 1986. [Google Scholar]
- Cooper, S.E.; Robinson, D.A. The relationship of mathematics self-efficacy beliefs to mathematics anxiety and performance. Meas. Eval. Couns. Dev. 1991, 24, 4–8. [Google Scholar]
- Williams, T.; Williams, K. Self-efficacy and performance in mathematics: Reciprocal determinism in 33 nations. J. Educ. Psychol. 2010, 102, 453–466. [Google Scholar] [CrossRef]
- Briley, J.S. The relationships among mathematics teaching efficacy, mathematics self-efficacy, and mathematical beliefs for elementary pre-service teachers. Issues Undergrad. Math. Prep. Sch. Teach. 2012, 5, 1–13. [Google Scholar]
- May, D.K. Mathematics Self-Efficacy and Anxiety Questionnaire. Ph.D. Thesis, The University of Georgia, Athens Clarke County, GA, USA, 2009. [Google Scholar]
- Ozyurek, R. The reliability and validity of the mathematics self-efficacy informative sources scale. Educ. Sci. Theory Pract. 2010, 10, 439–447. [Google Scholar]
- Andrews, P.; Diego-Mantecón, J. Instrument adaptation in cross-cultural studies of students’ mathematics-related beliefs: Learning from healthcare research. Comp. J. Comp. Int. Educ. 2015, 45, 545–567. [Google Scholar] [CrossRef] [Green Version]
- De Camposeco Torres, F.M. La Autoeficacia Como Variable en la Motivación Intrínseca y Extrínseca en Matemáticas a Través de un Criterio Étnico. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2012. [Google Scholar]
- Zalazar Jaime, M.F.; Aparicio Martín, M.D.; Ramírez Flores, C.M.; Garrido, S.J. Estudios preliminares de adaptación de la escala de fuentes de autoeficacia para matemáticas. Rev. Argent. Cienc. Comport. 2011, 3, 1–6. [Google Scholar]
- Betz, N.E.; Hackett, G. The relationship of mathematics self-efficacy expectations to the selection of science-based college majors. J. Vocat. Behav. 1983, 23, 329–345. [Google Scholar] [CrossRef]
- O’Brien, V.; Martinez-Pons, M.; Kopala, M. Mathematics self-efficacy, ethnic identity, gender, and career interests related to mathematics and science. J. Educ. Res. 1999, 92, 231–235. [Google Scholar] [CrossRef]
- Gatobu, S.; Arocha, J.F.; Hoffman-Goetz, L. Numeracy and health numeracy among Chinese and Kenyan immigrants to Canada: Role of math self-efficacy. SAGE Open 2014, 4, 1–10. [Google Scholar] [CrossRef]
- Lent, R.; Lopez, F.; Bieschke, K. Mathematics self-efficacy sources and relation to science-based career choice. J. Couns. Psychol. 1991, 38, 424–430. [Google Scholar] [CrossRef]
- Hall, J.M.; Ponton, M.K. Mathematics self-efficacy of college freshman. J. Dev. Educ. 2005, 28, 26–32. [Google Scholar]
- Bates, A.B.; Latham, N.; Kim, J. Linking preservice teachers mathematics self-efficacy and mathematics teaching efficacy to their mathematical performance. Sch. Sci. Math. 2011, 111, 325–333. [Google Scholar] [CrossRef]
- Chávez, L.M.; Canino, G. Toolkit on Translating and Adapting Instruments; Human Services Research Institute: Cambridge, MA, USA, 2005. [Google Scholar]
- Walther, J. Understanding interpretive research through the lens of a cultural verfremdungseffekt. J. Eng. Educ. 2014, 103, 450–462. [Google Scholar] [CrossRef]
- International Test Commission. The ITC Guidelines for Translating and Adapting Tests. 2007. Available online: https://www.intestcom.org/files/guideline_test_adaptation_2ed.pdf (accessed on 18 November 2018).
- McMullan, M.; Jones, R.; Lea, S. Math anxiety, self-efficacy, and ability in British undergraduate nursing students. Res. Nurs. Health 2012, 35, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Junge, M.E.; Dretzke, B.J. Mathematical self-efficacy gender differences in gifted/talented adolescents. Gift. Child Q. 1995, 39, 22–26. [Google Scholar] [CrossRef]
- Riddle, K.; Domiano, L. Does teaching methodology affect medication dosage calculation skills of undergraduate nursing students? J. Nurs. Educ. Pract. 2020, 10, 36–41. [Google Scholar] [CrossRef]
- Kranzler, J.H.; Pajares, F. An exploratory factor analysis of the mathematics self-efficacy scale-revised (MSES-R). Meas. Eval. Couns. Dev. 1997, 29, 215–229. [Google Scholar] [CrossRef]
- Langenfeld, T.E.; Pajares, F. The mathematics self-efficacy scale: A validation study. In Proceedings of the Annual Meeting of the American Educational Research Association, Atlanta, GA, USA, 12–16 April 1993. [Google Scholar]
- Margot, K.C.; Kettler, T. Teachers perception of STEM integration and education: A systematic literature review. Int. J. STEM Educ. 2019, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Nauta, M.M.; Kahn, J.H.; Angell, J.W.; Cantarelli, E.A. Identifying the antecedent in the relation between career interests and self-efficacy: Is it one, the other, or both? J. Couns. Psychol. 2002, 49, 290–301. [Google Scholar] [CrossRef]
- Tracey, T.J.G. Development of interests and competency beliefs: A 1-year longitudinal study of fifth- to eighth-grade students using the ICA-R and structural equation modeling. J. Couns. Psychol. 2002, 49, 148–163. [Google Scholar] [CrossRef]
- Lent, R.W.; Brown, S.D.; Hackett, G. Contextual supports and barriers to career choice: A social cognitive analysis. J. Couns. Psychol. 2000, 47, 36–49. [Google Scholar] [CrossRef]
- Grigg, S.; Perera, H.N.; McIlveen, P.; Svetleff, Z. Relations among math self efficacy, interest, intentions, and achievement: A social cognitive perspective. Contemp. Educ. Psychol. 2018, 53, 73–86. [Google Scholar] [CrossRef]
- Gardner, J.; Pyke, P.; Belcheir, M.; Schrader, C. Testing our assumptions: Mathematics preparation and its role in engineering student success. In Proceedings of the 2007 American Society for Engineering Education Annual Conference and Exposition, Honolulu, HI, USA, 24–27 June 2007. [Google Scholar]
- Middleton, J.A.; Krause, S.; Maass, S.; Beeley, K.; Collofello, J.; Culbertson, R. Early course and grade predictors of persistence in undergraduate engineering majors. In Proceedings of the 2014 IEEE Frontiers in Education Conference, El Paso, TX, USA, 21–24 October 2015. [Google Scholar]
- Van Dyken, J.; Benson, L.; Gerard, P. Persistence in Engineering: Does Initial Mathematics Course Matter? In Proceedings of the ASEE Annual Conference & Exposition, Seattle, WA, USA, 14–17 June 2015. [Google Scholar]
- Dare, E.A.; Ellis, J.A.; Roehrig, G.H. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics. J. Pre-College Eng. Educ. Res. 2014, 4, 5. [Google Scholar] [CrossRef]
- Geisinger, B.N.; Raman, D.R. Why they leave: Understanding student attrition from engineering majors. Int. J. Eng. Educ. 2013, 29, 914–925. [Google Scholar]
- Peña-Calvo, J.V.; Inda-Caro, M.; Rodríguez-Menéndez, C.; Fernández-García, C.M. Perceived supports and barriers for career development for second-year STEM students. J. Eng. Educ. 2016, 105, 341–365. [Google Scholar] [CrossRef]
- Council, N.R. Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future; The National Academic Press: Washington, DC, USA, 2007. [Google Scholar]
- Faulkner, B.; Johnson-Glauch, N.; Choi, D.S.; Herman, G.L. When am I ever going to use this? An investigation of the calculus content of core engineering courses. J. Eng. Educ. 2020, 109, 1–22. [Google Scholar] [CrossRef]
- Suresh, R. The relationship between barrier courses and persistence in engineering. J. Coll. Student Retent. Res. Theory Pract. 2006, 8, 215–239. [Google Scholar] [CrossRef]
- Jones, B.D.; Paretti, M.C.; Hein, S.F.; Knott, T.W. An analysis of motivation constructs with first-year engineering students: Relationships among expectancies, values, achievement, and career plans. J. Eng. Educ. 2010, 99, 319–336. [Google Scholar] [CrossRef]
- Chen, P.P. Exploring the accuracy and predictability of the self-efficacy beliefs of seventh-grade mathematics students. Learn. Individ. Differ. 2003, 14, 77–90. [Google Scholar] [CrossRef]
- Chen, P.; Zimmerman, B. A Cross-National Comparison Study on the Accuracy of Self-Efficacy Beliefs of Middle-School Mathematics Students. J. Exp. Educ. 2007, 75, 221–244. [Google Scholar] [CrossRef]
- Kitsantas, A.; Cheema, J.; Ware, H.W. Mathematics achievement: The role of homework and self-efficacy beliefs. J. Adv. Acad. 2011, 22, 310–339. [Google Scholar] [CrossRef] [Green Version]
- Zakariya, Y.F.; Goodchild, S.; Bjørkestøl, K.; Nilsen, H.K. Calculus self-efficacy inventory: Its development and relationship with approaches to learning. Educ. Sci. 2019, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Pajares, F.; Graham, L. Self-efficacy, motivation constructs, and mathematics performance of entering middle school students. Contemp. Educ. Psychol. 1999, 24, 124–139. [Google Scholar] [CrossRef] [Green Version]
- Stevens, T.; Olivarez, A.; Lan, W.Y. Role of mathematics self-efficacy and motivation in mathematics performance across ethnicity. J. Educ. Res. 2004, 97, 208–221. [Google Scholar] [CrossRef]
- Bandura, A. Guide for cosntructing self-efficay scales. In Self-Efficacy Beliefs of Adolescents; Pajares, F., Urdan, T., Eds.; Information Age Publishing: Charlotte, NC, USA, 1997; pp. 307–337. [Google Scholar]
- Andrew, S.; Salamonson, Y.; Halcomb, E.J. Nursing students confidence in medication calculations predicts math exam performance. Nurse Educ. Today 2009, 29, 217–223. [Google Scholar] [CrossRef]
- Randhawa, B.S.; Beamer, J.E.; Lundberg, I. Role of mathematics self-efficacy in the structural model of mathematics achievement. J. Educ. Psychol. 1993, 85, 41–48. [Google Scholar] [CrossRef]
- Silk, K.J.; Parrott, R.L. Math anxiety and exposure to statistics in messages about genetically modified foods: Effects of numeracy, math self-efficacy, and form of presentation. J. Health Commun. 2014, 19, 838–852. [Google Scholar] [CrossRef]
- Nunnally, J.; Bernstein, I. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Hackett, G.; Betz, N.E. An exploration of the mathematics self-efficacy/mathematics performance correspondence. J. Res. Math. Educ. 1989, 20, 261–273. [Google Scholar] [CrossRef]
- Cassirer, E. Antropología Filosófica: Introducción a una Filosofía de la Cultura; Fondo de Cultura Económica: Mexico City, Mexico, 1967. [Google Scholar]
- Greenbaum, T. The Handbook for Focus Group Research; SAGE Publications: Thousand Oaks, CA, USA, 1997. [Google Scholar]
- Hardesty, D.M.; Bearden, W.O. The use of expert judges in scale development: Implications for improving face validity of measures of unobservable constructs. J. Bus. Res. 2004, 57, 98–107. [Google Scholar] [CrossRef]
- Creswell, J.W. Research Design: Qualitative, Quantitative and Mixed Methods Research; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2009. [Google Scholar]
- Fabrigar, L.; Wegener, D.; MacCallum, R.; Strahan, E. Evaluating the use of exploratory factor analysis in psychological research. Psychol. Methods 1999, 4, 272. [Google Scholar] [CrossRef]
- Costello, A.B.; Osborne, J. Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 10, 7. [Google Scholar]
- Lee, W.C.; Godwin, A.; Hermundstad, A.L. Development of the engineering student integration instrument: Rethinking measures of integration. J. Eng. Educ. 2018, 107, 30–55. [Google Scholar] [CrossRef]
- Osborne, J.W.; Fitzpatrick, D.C. Replication analysis in exploratory factor analysis: What it is and why it makes your analysis better. Pract. Assess. Res. Eval. 2012, 17, 15. [Google Scholar]
- Thorndike, R.M.; Thorndike-Christ, T. Measurement and Evaluation in Psychology and Education; Pearson: Boston, MA, USA, 2010. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford: New York, NY, USA, 2005. [Google Scholar]
- Hendrickson, A.; White, P. Promax: A quick method for rotation to oblique simple structure. Br. J. Stat. Psychol. 1964, 17, 65–70. [Google Scholar] [CrossRef]
- Osborne, J.W. Best Practices in Exploratory Factor Analysis; Createspac Publishing: Scotts Valley, CA, USA, 2014. [Google Scholar]
- Field, A. Discovering Statistics Using SPSS; Sage Publishing: London, UK, 2009. [Google Scholar]
- Kaiser, H.F. A second generation little jiffy. Psychometrika 1970, 35, 401–415. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Kelley, T.R.; Knowles, J.G. A conceptual framework for integrated STEM education. Int. J. STEM Educ. 2016, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Soldner, M. STEM Attrition: College Students Paths into and Out of STEM Fields Statistical Analysis Report. 2013. Available online: https://nces.ed.gov/pubs2014/2014001rev.pdf (accessed on 20 January 2018).
- Ellington, A.J. A meta-analysis of the effects of calculators on students’ achievement and attitude levels in precollege mathematics classes. J. Res. Math. Educ. 2003, 34, 433–463. [Google Scholar] [CrossRef]
- Lopez, K.A.; Willis, D.G. Descriptive versus interpretive phenomenology: Their contributions to nursing knowledge. Qual. Health Res. 2004, 14, 726. [Google Scholar] [CrossRef] [PubMed]
- Bowen, G.A. Sensitizing Concepts; SAGE Publications: Thousand Oaks, CA, USA, 2006. [Google Scholar]
- Walther, J.; Sochacka, N.W.; Kellam, N.N. Quality in interpretive engineering education research: Reflections on an example study. J. Eng. Educ. 2013, 102, 626–659. [Google Scholar] [CrossRef]
- MacFarlane, B.; MacFarlane, B. Infrastructure of comprehensive STEM programming for advanced learners. STEM Educ. High-Ability Learn. Des. Implement. Program. 2016, 1, 139–160. [Google Scholar]
- Flores, A. Examining disparities in mathematics education: Achievement gap or opportunity gap? High Sch. J. 2007, 91, 29–42. [Google Scholar] [CrossRef]
- Reis, S.M.; Park, S. Gender differences in high-achieving students in math and science. J. Educ. Gift. 2001, 25, 52–73. [Google Scholar] [CrossRef]
Item | Factor Loadings | ||
---|---|---|---|
Everyday Math Activities | Math-Related College Courses | Math Problem-Solving | |
Q2 | 0.550 | - | - |
Q3 | 0.489 | - | - |
Q4 | 0.656 | - | - |
Q5 | 0.544 | - | - |
Q6 | 0.551 | - | - |
Q7 | 0.684 | - | - |
Q9 | 0.464 | - | - |
Q10 | 0.705 | - | - |
Q11 | 0.731 | - | - |
Q13 | 0.520 | - | - |
Q14 | 0.667 | - | - |
Q15 | 0.632 | - | - |
Q16 | 0.564 | - | - |
Q17 | 0.594 | - | - |
Q18 | 0.487 | - | - |
Q21 | - | 0.563 | - |
Q23 | - | 0.454 | - |
Q24 | - | 0.776 | - |
Q26 | - | 0.601 | - |
Q27 | - | 0.738 | - |
Q28 | - | 0.592 | - |
Q29 | - | 0.614 | - |
Q30 | - | 0.651 | - |
Q35 | - | - | 0.680 |
Q36 | - | - | 0.718 |
Q37 | - | - | 0.618 |
Q38 | - | - | 0.633 |
Q40 | - | - | 0.674 |
Q41 | - | - | 0.687 |
Q42 | - | - | 0.716 |
Q43 | - | - | 0.582 |
Q44 | - | - | 0.573 |
Q46 | - | - | 0.812 |
Q47 | - | - | 0.754 |
Q48 | - | - | 0.663 |
Q49 | - | - | 0.786 |
Q50 | - | - | 0.706 |
Q51 | - | - | 0.677 |
Q52 | - | - | 0.592 |
Items | |
---|---|
Q1 | Work with a scientific calculator. |
Q8 | Using mental math, add two large numbers (for example, 5739 + 62,543). |
Q12 | Calculate how long it will take to travel from city A to city B if these cities are 300 km away, driving at 85 kilometers per hour. |
Q19 | Advanced calculus. |
Q20 | Calculus. |
Q22 | Statistics. |
Q25 | Trigonometry. |
Q31 | Geometry. |
Q32 | Algebra II. |
Q33 | Algebra I. |
Q34 | Fundamentals of Mathematics. |
Q39 | The opposite angles in a parallelogram are ___________. |
Q45 | A room that includes a sofa and chair costs $ 200. If the sofa price is 50% higher than the chair price, find the price of the sofa. |
Item | Everyday Math Activities | Math-Related College Courses | Math Problem-Solving |
---|---|---|---|
Q2 | 0.468 | - | 0.251 |
Q3 | 0.353 | - | 0.308 |
Q4 | 0.467 | - | - |
Q5 | 0.400 | - | 0.288 |
Q6 * | 0.269 | - | - |
Q7 | 0.529 | - | - |
Q9 | 0.512 | - | - |
Q10 | 0.613 | - | - |
Q11 | 0.671 | - | - |
Q13 * | 0.285 | - | 0.452 |
Q14 | 0.716 | - | - |
Q15 | 0.662 | - | - |
Q16 | 0.479 | - | - |
Q17 | 0.590 | - | - |
Q18 | 0.512 | - | - |
Q21 | - | 0.552 | - |
Q23 | - | 0.547 | - |
Q24 | - | 0.772 | - |
Q26 | 0.236 | 0.591 | - |
Q27 | - | 0.764 | - |
Q28 | - | 0.557 | - |
Q29 | - | 0.593 | - |
Q30 | 0.225 | 0.547 | - |
Q35 | - | - | 0.575 |
Q36 | - | - | 0.777 |
Q37 | - | - | 0.690 |
Q38 | - | - | 0.749 |
Q40 | - | - | 0.675 |
Q41 | - | - | 0.611 |
Q42 | - | - | 0.639 |
Q43 | - | - | 0.645 |
Q44 | - | - | 0.684 |
Q46 | - | - | 0.707 |
Q47 | - | - | 0.783 |
Q48 | - | - | 0.722 |
Q49 | - | - | 0.604 |
Q50 | - | - | 0.688 |
Q51 | - | - | 0.628 |
Q52 | - | - | 0.426 |
Factor | Cronbach’s Alpha |
---|---|
First Sample | |
Everyday math activities | 0.917 |
Math-related college courses | 0.873 |
Math problem-solving | 0.953 |
Second Sample | |
Everyday math activities | 0.893 |
Math-related college courses | 0.864 |
Math problem-solving | 0.936 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morán-Soto, G.; Valdivia Vázquez, J.A.; González Peña, O.I. Adaptation Process of the Mathematic Self-Efficacy Survey (MSES) Scale to Mexican-Spanish Language. Mathematics 2022, 10, 798. https://doi.org/10.3390/math10050798
Morán-Soto G, Valdivia Vázquez JA, González Peña OI. Adaptation Process of the Mathematic Self-Efficacy Survey (MSES) Scale to Mexican-Spanish Language. Mathematics. 2022; 10(5):798. https://doi.org/10.3390/math10050798
Chicago/Turabian StyleMorán-Soto, Gustavo, Juan Antonio Valdivia Vázquez, and Omar Israel González Peña. 2022. "Adaptation Process of the Mathematic Self-Efficacy Survey (MSES) Scale to Mexican-Spanish Language" Mathematics 10, no. 5: 798. https://doi.org/10.3390/math10050798
APA StyleMorán-Soto, G., Valdivia Vázquez, J. A., & González Peña, O. I. (2022). Adaptation Process of the Mathematic Self-Efficacy Survey (MSES) Scale to Mexican-Spanish Language. Mathematics, 10(5), 798. https://doi.org/10.3390/math10050798