A Neural Network Type Approach for Constructing Runge–Kutta Pairs of Orders Six and Five That Perform Best on Problems with Oscillatory Solutions
Abstract
:1. Introduction
2. Theory of Runge–Kutta Pairs of Orders 6(5)
3. Training the Coefficients
4. Numerical Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butcher, J.C. On Runge-Kutta processes of high order. J. Austral. Math. Soc. 1964, 4, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Butcher, J.C. Numerical Methods for Ordinary Differential Equations; John Wiley & Sons: Chichester, UK, 2003. [Google Scholar]
- Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Differential Equations I; Springer: Berlin, Germany, 1987. [Google Scholar]
- Runge, C. Ueber die numerische Auflöung von Differentialgleichungen. Math. Ann. 1895, 46, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Kutta, W. Beitrag zur naherungsweisen Integration von Differentialgleichungen. Z. Math. Phys. 1901, 46, 435–453. [Google Scholar]
- Fehlberg, E. Klassische Runge-Kutta-Formeln fiinfter und siebenter Ordnung mit Schrittweiten-Kontrolle. Computing 1969, 4, 93–106. [Google Scholar] [CrossRef]
- Fehlberg, E. Klassische Runge-Kutta-Formeln vierter und niedriger ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Warmeleitungsprobleme. Computing 1970, 6, 61–71. [Google Scholar] [CrossRef]
- Dormand, J.R.; Prince, P.J. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Prince, P.J.; Dormand, J.R. High order embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1981, 7, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Tsitouras, C. Explicit Runge–Kutta methods for starting integration of Lane–Emden problem. Appl. Math. Comput. 2019, 354, 353–364. [Google Scholar] [CrossRef]
- Sharp, E.W.; Smart, E. Explicit Runge-Kutta pairs with one more derivative evaluation than minimum. SIAM J. Sci. Statist. Comput. 1993, 14, 338–348. [Google Scholar] [CrossRef]
- Verner, J.H. Some Runge-Kutta formula pairs. SIAM J. Numer. Anal. 1991, 28, 496–511. [Google Scholar] [CrossRef]
- Dormand, J.R.; Lockyer, M.A.; McGorrigan, N.E.; Prince, P.J. Global error estimation with Runge-Kutta triples. Comput. Math. Appl. 1989, 18, 835–846. [Google Scholar] [CrossRef] [Green Version]
- Tsitouras, C. A parameter study of explicit Runge-Kutta pairs of orders 6(5). Appl. Math. Lett. 1998, 11, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, G.; Tsitouras, C.; Papakostas, S.N. Runge-Kutta pairs for periodic initial value problems. Computing 1993, 51, 151–163. [Google Scholar] [CrossRef]
- Shampine, L.F. Some practical Runge-Kutta formulas. Math. Comp. 1986, 46, 135–150. [Google Scholar] [CrossRef]
- Tsitouras, C. Neural Networks With Multidimensional Transfer Functions. IEEE Trans. Neural Netw. 2002, 13, 222–228. [Google Scholar] [CrossRef]
- Storn, R.M.; Price, K.V. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Price, K.V.; Storn, R.M.; Lampinen, J.A. Differential Evolution, a Practical Approach to Global Optimization; Springer: Berlin, Germany, 2005. [Google Scholar]
- Shen, Y.C.; Lin, C.L.; Simos, T.E.; Tsitouras, C. Runge-Kutta Pairs of Orders 6(5) with Coefficients Trained to Perform Best on Classical Orbits. Mathematics 2021, 9, 1342. [Google Scholar] [CrossRef]
- Papageorgiou, G.; Papakostas, S.N.; Tsitouras, C. A general family of explicit Runge-Kutta pairs of orders 6(5). SIAM J. Numer. Anal. 1996, 33, 917–936. [Google Scholar]
- Chawla, M.M.; Rao, P.S. An exDlicit sixth-order method with phase-iag of order eight for y″ = f(t, y). J. Comput. Appl. Math. 1987, 17, 365–368. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Wang, Z. A Mathematica program for the approximate analytical solution o a nonlinear undamped Duffing equation by a new approximate approach. Comput. Phys. Commun. 2006, 174, 447–463. [Google Scholar] [CrossRef]
- Franco, J.M.; Gomez, I. Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs. Appl. Math. Comput. 2014, 232, 643–657. [Google Scholar] [CrossRef]
- Papakostas, S.N.; Papageorgiou, G. A family of fifth order pairs. Math. Comput. 1996, 65, 1165–1181. [Google Scholar] [CrossRef] [Green Version]
0 | |||||||||
0 | |||||||||
0 | |||||||||
0 | |||||||||
0 | |||||||||
0 | |||||||||
0 | 0 | ||||||||
0 | 0 | ||||||||
0 | 0 |
Tolerances | |||||||
---|---|---|---|---|---|---|---|
Problem | |||||||
1 | |||||||
2 | |||||||
3 | |||||||
4 | |||||||
5 | |||||||
6 | |||||||
7 | |||||||
8 | |||||||
9 |
Tolerances | |||||||
---|---|---|---|---|---|---|---|
Problem | |||||||
1 | |||||||
2 | |||||||
3 | |||||||
4 | |||||||
5 | |||||||
6 | |||||||
7 | |||||||
8 | |||||||
9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jerbi, H.; Ben Aoun, S.; Omri, M.; Simos, T.E.; Tsitouras, C. A Neural Network Type Approach for Constructing Runge–Kutta Pairs of Orders Six and Five That Perform Best on Problems with Oscillatory Solutions. Mathematics 2022, 10, 827. https://doi.org/10.3390/math10050827
Jerbi H, Ben Aoun S, Omri M, Simos TE, Tsitouras C. A Neural Network Type Approach for Constructing Runge–Kutta Pairs of Orders Six and Five That Perform Best on Problems with Oscillatory Solutions. Mathematics. 2022; 10(5):827. https://doi.org/10.3390/math10050827
Chicago/Turabian StyleJerbi, Houssem, Sondess Ben Aoun, Mohamed Omri, Theodore E. Simos, and Charalampos Tsitouras. 2022. "A Neural Network Type Approach for Constructing Runge–Kutta Pairs of Orders Six and Five That Perform Best on Problems with Oscillatory Solutions" Mathematics 10, no. 5: 827. https://doi.org/10.3390/math10050827
APA StyleJerbi, H., Ben Aoun, S., Omri, M., Simos, T. E., & Tsitouras, C. (2022). A Neural Network Type Approach for Constructing Runge–Kutta Pairs of Orders Six and Five That Perform Best on Problems with Oscillatory Solutions. Mathematics, 10(5), 827. https://doi.org/10.3390/math10050827