Hilfer Fractional Quantum Derivative and Boundary Value Problems
Abstract
:1. Introduction
2. Preliminaries
3. The Hilfer Fractional Quantum Derivative
4. Applications
4.1. Boundary Value Problems of Order
4.2. Boundary Value Problems of Order
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Ernst, T.A. Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Salem, A. Generalized q-integrals via neutrices: Application to the q-beta function. Filomat 2013, 27, 1473–1483. [Google Scholar] [CrossRef] [Green Version]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Lecture Notes in Mathematics; Springer: Berlin, Germany, 2012; Volume 2056. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Boundary value problems for q-difference inclusions. Abstr. Appl. Anal. 2011, 2011, 292860. [Google Scholar] [CrossRef] [Green Version]
- Dobrogowska, A.; Odzijewicz, A. Second order q-difference equations solvable by factorization method. J. Comput. Appl. Math. 2006, 193, 319–346. [Google Scholar] [CrossRef] [Green Version]
- El-Shahed, M.; Hassan, H.A. Positive solutions of q-difference equation. Proc. Am. Math. Soc. 2010, 138, 1733–1738. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, R. Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 2010, 1–10. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Ma, J.; Yang, J. Existence of solutions for multi-point boundary value problem of fractional q-difference equation. Electron. J. Qual. Theory Differ. Equ. 2011, 2011, 1–10. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Boundary value problems for q-difference equations and inclusions with nonlocal and integral boundary conditions. Math. Mod. Anal. 2014, 19, 647–663. [Google Scholar] [CrossRef] [Green Version]
- Yang, C. Positive Solutions for a three-point boundary value problem of fractional q-difference equations. Symmetry 2018, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Guo, J.; Kang, S.; Li, H. Existence and uniqueness of positive solutions for nonlinear q-difference equation with integral boundary conditions. J. Appl. Anal. Comput. 2020, 10, 153–164. [Google Scholar] [CrossRef]
- Ouncharoen, R.; Patanarapeelert, N.; Sitthiwirattham, T. Nonlocal q-symmetric integral boundary value problem for sequential q-symmetric integrodifference equations. Mathematics 2018, 6, 218. [Google Scholar] [CrossRef] [Green Version]
- Zhai, C.; Ren, J. Positive and negative solutions of a boundary value problem for a fractional q-difference equation. Adv. Differ. Equ. 2017, 2017, 82. [Google Scholar] [CrossRef] [Green Version]
- Ren, J. Nonlocal q-fractional boundary value problem with Stieltjes integral conditions. Nonlinear Anal. Model. Control. 2019, 24, 582–602. [Google Scholar] [CrossRef]
- Ren, J.; Zhai, C. Characteristic of unique positive solution for a fractional q-difference equation with multistrip boundary conditions. Math. Commun. 2019, 24, 181–192. [Google Scholar]
- Ren, J.; Zhai, C. A fractional q-difference equation with integral boundary conditions and comparison theorem. Int. J. Nonliner Sci. Num. 2017, 18, 575–583. [Google Scholar] [CrossRef]
- Ren, J.; Zhai, C. Unique solutions for fractional q-difference boundary value problems via a fixed point method. Bull. Malays. Math. Sci. Soc. 2019, 42, 1507–1521. [Google Scholar] [CrossRef]
- Zhai, C.; Ren, J. The unique solution for a fractional q-difference equation with three-point boundary conditions. Indag. Math. 2018, 29, 948–961. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Quantum Calculus: New Concepts, Impulsive IVPs and BVPs, Inequalities; Trends in Abstract and Applied Analysis; World Scientific: Singapore, 2016; Volume 4. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Ahmad, B.; Tariboon, J.; Ntouyas, S.K.; Alsulami, H.H.; Monaquel, S. Existence results for impulsive fractional q-difference equations with anti-periodic boundary conditions. Bound. Value Probl. 2016, 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Suantai, S.; Ntouyas, S.K.; Asawasamrit, S.; Tariboon, J. A coupled system of fractional q-integro-difference equations with nonlocal fractional q-integral boundary conditions. Adv. Differ. Equ. 2015, 2015, 124. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongsantisuk, P.; Ntouyas, S.K.; Passary, D.; Tariboon, J. Hilfer Fractional Quantum Derivative and Boundary Value Problems. Mathematics 2022, 10, 878. https://doi.org/10.3390/math10060878
Wongsantisuk P, Ntouyas SK, Passary D, Tariboon J. Hilfer Fractional Quantum Derivative and Boundary Value Problems. Mathematics. 2022; 10(6):878. https://doi.org/10.3390/math10060878
Chicago/Turabian StyleWongsantisuk, Phollakrit, Sotiris K. Ntouyas, Donny Passary, and Jessada Tariboon. 2022. "Hilfer Fractional Quantum Derivative and Boundary Value Problems" Mathematics 10, no. 6: 878. https://doi.org/10.3390/math10060878
APA StyleWongsantisuk, P., Ntouyas, S. K., Passary, D., & Tariboon, J. (2022). Hilfer Fractional Quantum Derivative and Boundary Value Problems. Mathematics, 10(6), 878. https://doi.org/10.3390/math10060878