A Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation
Abstract
:1. Introduction
2. Preliminary Information
3. An Analogue of the Holmgren’s Boundary Value Problem
3.1. Problem Statement and Main Results
3.2. Proof of Results
3.2.1. Uniqueness of Solution
3.2.2. Existence of Solution
- (1)
- This function is a regular solution of the Equation (1) inside the domainexcept for the point;
- (2)
- It satisfies the boundary conditions
- (3)
- The Green’s function is represented as
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tricomi, F.G. Sulle Equazioni Lineari alle derivate Parziali di 2° Ordine, di Tipo Misto. Atti. Accad. Naz. Lincei 1923, 14, 133–247. [Google Scholar]
- Frankl, F.I. Selected Works on Gas Dynamics; Nauka: Moscow, Russia, 1973. (In Russian) [Google Scholar]
- Smirnov, M.M. Degenerate Elliptic and Hyperbolic Equations; Nauka: Moscow, Russia, 1966. (In Russian) [Google Scholar]
- Bers, L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Kovalenko, A.D.; Grigorenko, Y.M.; Il’in, L.A. Theory of Thin Conical Shells and Its Application in Mechanical Engineering; Izd. AN USSR: Kiev, Russia, 1963. (In Russian) [Google Scholar]
- Kogan, M.N. On magnetohydrodynamic ows of mixed. App. Mat. Fur. 1961, 25, 132–137. (in Russian). [Google Scholar]
- Smart, U.M. Celestial Mechanics; Mir: Moscow, Russia, 1965. (In Russian) [Google Scholar]
- Candelas, P.; De la Ossa, X.; Greene, P.; Parkes, L. A pair of Calabi-Yau manifolds as an exactly soluble super conformal theory. Nucl. Phys. 1991, B539, 21–74. [Google Scholar] [CrossRef]
- Varchenko, A. Adv. Ser. in Math. Phys. In Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups; World Scientific: Singapore, 1995; Volume 21. [Google Scholar]
- Vinogradov, Y.I.; Konstantinov, M.V. Calculation of a spherical tank under local impact. Izv. RAS Ser. Solid State Mech. 2016, 2, 109–120. [Google Scholar]
- Berdyshev, A.S.; Hasanov, A.; Ryskan, A.R. Decomposition formulas for some quadruple hypergeometric series. Bull. Karaganda Univ. Math. Ser. 2020, 4, 43–54. [Google Scholar] [CrossRef]
- Brown, R.T. Electronic Interaction Integrals for Atoms Calculated with Laguerre Polynomial Radial Wavefunctions. J. Chem. Phys. 1967, 46, 1551. [Google Scholar] [CrossRef]
- Gellerstedt, S. Some mixed problems for the equation ymzxx + zyy = 0. Arch. Math. Astr. Phys. 1937, B 26A, 1–32. [Google Scholar]
- Hasanov, A. Fundamental solutions of generalized bi-axially symmetric Helmholtz equation. Complex Var. Elliptic Equ. 2007, 52, 673–683. [Google Scholar] [CrossRef]
- Salakhitdinov, M.S.; Hasanov, A. A solution of the Neumann-Dirichlet boundary-value problem for generalized bi-axially symmetric Helmholtz equation. Complex Var. Elliptic Equ. 2008, 53, 355–364. [Google Scholar] [CrossRef]
- Berdyshev, A.S.; Hasanov, A.; Ergashev, T.G. Double-Layer Potentials for a generalized Bi-Axially Symmetric Helmholtz Equation. II. Complex Var. Elliptic Equ. 2020, 65, 316–332. [Google Scholar] [CrossRef]
- Hasanov, A.; Karimov, E.T. Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients. Appl. Math. Lett. 2009, 22, 1828–1832. [Google Scholar] [CrossRef] [Green Version]
- Hasanov, A.; Berdyshev, A.S.; Ryskan, A. Fundamental solutions for a class of four-dimensional degenerate elliptic equation. Complex Var. Elliptic Equ. 2020, 65, 632–647. [Google Scholar] [CrossRef]
- Berdyshev, A.S.; Ryskan, A. The Neumann and Dirichlet problems for one four-dimensional degenerate elliptic equation. Lobachevskii J. Math. 2020, 41, 1051–1066. [Google Scholar] [CrossRef]
- Berdyshev, A.S.; Hasanov, A.; Ryskan, A.R. Solution of the Neumann problem for one four-dimensional elliptic equation. Eurasian Math. J. 2020, 11, 93–97. [Google Scholar] [CrossRef]
- Karimov, E.T. On a boundary problem with Neumann’s condition for 3D singular elliptic equations. Appl. Math. Lett. 2010, 23, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Karimov, E.T.; Nieto, J.J. The Dirichlet problem for a 3D elliptic equation with two singular coefficients. Comput. Math. Appl. 2011, 62, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Appell, P.; Kampe de Feriet, J. Hypergeometric and Hyperspheric Functions. In Hermite Polynomials; Gauthier–Villars: Paris, France, 1926. (In French) [Google Scholar]
- Bateman, G.; Erdelyi, A. Higher Transcendental Functions. Hypergeometric Functions. Legendre Functions; Nauka: Moscow, Russoa, 1973. (In Russian) [Google Scholar]
- Hasanov, A.; Srivastava, H.M. Some decomposition formulas associated with the Lauricella function and other multiple hypergeometric functions. Appl. Math. Lett. 2006, 19, 113–121. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baishemirov, Z.; Berdyshev, A.; Ryskan, A. A Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation. Mathematics 2022, 10, 1094. https://doi.org/10.3390/math10071094
Baishemirov Z, Berdyshev A, Ryskan A. A Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation. Mathematics. 2022; 10(7):1094. https://doi.org/10.3390/math10071094
Chicago/Turabian StyleBaishemirov, Zharasbek, Abdumauvlen Berdyshev, and Ainur Ryskan. 2022. "A Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation" Mathematics 10, no. 7: 1094. https://doi.org/10.3390/math10071094
APA StyleBaishemirov, Z., Berdyshev, A., & Ryskan, A. (2022). A Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation. Mathematics, 10(7), 1094. https://doi.org/10.3390/math10071094