Next Article in Journal
The Effect of Alpha Neurofeedback Training on Cognitive Performance in Healthy Adults
Previous Article in Journal
Impact of Stratum Composition Changes on the Accuracy of the Estimates in a Sample Survey
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

A Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation

by
Zharasbek Baishemirov
1,2,
Abdumauvlen Berdyshev
1,2,* and
Ainur Ryskan
1,2,*
1
Institute of Mathematics, Physics and Informatics, Abai Kazakh National Pedagogical University, Tole bi Str., 86, Almaty 050012, Kazakhstan
2
Institute of Information and Computational Technologies of the Committee of Science MES RK, Pushkin Str., 125, Almaty 050010, Kazakhstan
*
Authors to whom correspondence should be addressed.
Mathematics 2022, 10(7), 1094; https://doi.org/10.3390/math10071094
Submission received: 1 March 2022 / Revised: 21 March 2022 / Accepted: 26 March 2022 / Published: 28 March 2022
(This article belongs to the Section Difference and Differential Equations)

Abstract

:
The solvability issues of counterpart Holmgren’s boundary value problem with mixed conditions for a degenerate four-dimensional second-order Gellerstedt equation H u y m z k t l u x x + x n z k t l u y y + x n y m t l u z z + x n y m z k u t t = 0 ,   m , n , k , l c o n s t > 0 , are studied in the finite domain R 4 + , where the values of normal derivatives are set on the piecewise smooth part of the boundary and the values of the desired function are set on the remaining part of the boundary. The main results of the work are the proof of the uniqueness of the considered problem solution by using an energy integral’s method and the construction of the solution of counterpart Holmgren’s boundary value problem in explicit form by means of Green’s function method, containing the hypergeometric Lauricella’s function F A 4 . Using the corresponding fundamental solution for the considered generalized Gellerstedt equation of elliptic type, we construct Green’s function. In addition, formulas of differentiation, some adjacent relations, decomposition formulas, and various properties of Lauricella’s hypergeometric functions were used to establish the main results for the aforementioned problem.

1. Introduction

Differential equations with degenerations, the solutions of which are expressed using special functions, are used in various applied problems. The first fundamental results for differential equations, in the study of which the hypergeometric Gauss function participated, belong to F. Tricomi [1]. Later, Tricomi’s problems found their development in the applied works of F.I. Frankl [2]. Further in [3], Dirichlet and N boundary value problems for a two-dimensional degenerate elliptic equation with one line of degeneracy were studied in detail; the existence of these problems’ solutions was proved by constructing the single-layer potentials. It is known that hypergeometric functions are used to solve such problems of mathematical physics as heat conduction problems, superstring theory, gas dynamics, celestial mechanics, the theory of electromagnetic oscillations, and aerodynamics [4,5,6,7,8,9,10,11]. Appel’s hypergeometric functions of two variables arise in solving physical problems of quantum mechanics of atomic systems [12].
Boundary value problems for a degenerate elliptic equation of two variables were studied by S. Gellerstedt using potential theory [13]. The articles [14,15,16] are devoted to finding fundamental solutions and constructing the double-layer potential for the generalized biaxially symmetric Helmholtz equation. Fundamental solutions for a three-dimensional elliptic equation with singular coefficients were constructed in [17].
In [18], we found sixteen fundamental solutions for the four-dimensional generalized Gellerstedt equation
H u = y m z k t l u x x + x n z k t l u y y + x n y m t l u z z + x n y m z k u t t = 0 ,       m , n , k , l c o n s t > 0
and applying appropriate fundamental solutions the solvability of Dirichlet and Neumann boundary value problems in an infinite area R + 4 = x , y , z , t : x > 0 , y > 0 , z > 0 , t > 0 was studied in [19,20]; the uniqueness and existence of the solution were proved.
In the course of the realization of the work purpose, the method used in [21,22] was applied, where solutions of boundary value problems for three-dimensional equations with singular coefficients were successfully constructed. In this paper, the correct solvability of the analogue of the Holmgren’s boundary value problem for Equation (1) is studied in the finite domain. The Green’s function of the problem under study is constructed using the corresponding fundamental solution of the Equation (1).

2. Preliminary Information

In this section, we recall some results and formulas related to Lauricella’s hypergeometric functions which will be used later in this work.
A multidimensional hypergeometric function F A ( n ) in the case of four variables has the form [23] (p. 114 (1))
F A ( 4 ) ( a ; b 1 , b 2 , b 3 , b 4 ; c 1 , c 2 , c 3 , c 4 ; x , y , z , t ) = m , n , p , q a m + n + p + q b 1 m b 2 n b 3 p b 4 q c 1 m c 2 n c 3 p c 4 q m ! n ! p ! q ! x m y n z p t q ,
moreover F A ( 4 ) uniformly converges at the condition   x + y + z + t < 1 [23] (p. 115).
Late we will use the following formula [24] for differentiating hypergeometric functions of four variables:
l 1 + l 2 + l 3 + l 4 x l 1 y l 2 z l 3 t l 4 F A 4 a ; b 1 , b 2 , b 3 , b 4 ; c 1 , c 2 , c 3 , c 4 ; x , y , z , t = a l 1 + l 2 + l 3 + l 4 b 1 l 1 b 2 l 2 b 3 l 3 b 4 l 4 c 1 l 1 c 2 l 2 c 3 l 3 c 4 l 4 × F A 4 a + l 1 + l 2 + l 3 + l 4 ; b 1 + l 1 , b 2 + l 2 , b 3 + l 3 , b 4 + l 4 ; c 1 + l 1 , c 2 + l 2 , c 3 + l 3 , c 4 + l 4 ; x , y , z , t , l 1 , l 2 , l 3 , l 4 N 0 = 0 , 1 , 2 , .
The validity of adjacent relations for multidimensional Lauricella’s hypergeometric functions was proved in [18] (p. 635):
b 1 c 1 x 1 F A n a + 1 ; b 1 + 1 , b 2 , , b n ; c 1 + 1 , c 2 , , c n ; x 1 , , x n + + b 2 c 2 x 2 F A n a + 1 ; b 1 , b 2 + 1 , , b n ; c 1 , c 2 + 1 , , c n ; x 1 , , x n + + + b n c n x n F A n a + 1 ; b 1 , b 2 , , b n + 1 ; c 1 , c 2 , , c n + 1 ; x 1 , , x n = = F A n a + 1 ; b 1 , , b n ; c 1 , , c n ; x 1 , , x n F A n a ; b 1 , , b n ; c 1 , , c n ; x 1 , , x n .
We will also use the decomposition formula of many arguments [25]:
F A r a , b 1 , , b r ; c 1 , , c r ; x 1 , , x r = m 2 , , m r = 0 a m 2 + + m r b 1 m 2 + + m r b 2 m 2 b r m r m 2 ! m r ! c 1 m 2 + + m r c 2 m 2 c r m r × x 1 m 2 + + m r x 2 m 2 x r m r 2 F 1 a + m 2 + + m r , b 1 + m 2 + + m r ; c 1 + m 2 + + m r ; x 1 × F A r 1 a + m 2 + + m r , b 2 + m 2 , , b r + m r ; c 2 + m 2 , , c r + m r ; x 2 , , x r , r \ 1 ; : = 1 , 2 , 3 , .
The Boltz auto transformation formula will be used [24] (p. 113)
F a , b ; c ; x = 1 x b F c a , b ; c ; x x 1 ,
which is valid for the Gauss hypergeometric function
F a , b ; c ; x = n = 0 a n b n c n n ! x n ,         c 0 ,     1 ,     2 ,     ,
where
a n = a a + 1 a + 2 a + n 1   = Γ a + n Γ a       n = 0 , 1 , 2 , 3 ,
is the Pochhammer symbol. Here Γ is Euler gamma function, which has the property:
λ m + n = λ m λ + m n .
For Lauricella’s hypergeometric function [23] (p. 114 (4))
F D n a ; b 1 , b 2 , b 3 , ... , b n ; c ; x 1 , x 2 , , x n = m 1 , , m n = 0 a m 1 + + m n b 1 m 1 b n m n c m 1 + + m n m 1 ! m n ! x 1 m 1 x n m n , x 1 < 1 ,       x 2 < 1 ,         ,   x n < 1 ,
following formula [24] (p. 117) holds, when n = 1:
F D n a ; b 1 , b 2 , b 3 , , b n ; c ; 1 , 1 , , 1 = Γ c Γ c a b 1 b 2 b n Γ c a Γ c b 1 b 2 b n ,       n = 1 , 2 , Re c a b 1 b 2 b n > 0 ,       c 0 , 1 , 2 , .

3. An Analogue of the Holmgren’s Boundary Value Problem

3.1. Problem Statement and Main Results

Let D be a finite simply connected domain in R 4 + bounded by hyperplanes
S 1 = 0 , y , z , t :   x = 0   ,     0 < y < b ,     0 < z < c ,     0 < t < e   , S 2 = x , 0 , z , t :   0 < x < a ,     y = 0 ,     0 < z < c ,     0 < t < e , S 3 = x , y , 0 , t :     0 < x < a ,     0 < y < b ,   z = 0 ,     0 < t < e , S 4 = x , y , z , 0 :     0 < x < a ,     0 < y < b ,     0 < z < c ,     t = 0
and smooth surface S 5 . Here a ,     b ,     c ,     e are positive numbers, A a , 0 , 0 , 0 ,   B 0 , b , 0 , 0 ,   C 0 , 0 , c , 0 ,     E 0 , 0 , 0 , e and O 0 , 0 , 0 , 0 .
Problem N.
Find a regular solution u x , y , z , t of the Equation (1) from the class C D ¯ C 1 D S 1 S 2 S 3 S 4 C 2 D satisfying the conditions
x u x , y , z , t x = 0 = ν 1 y , z , t ,   y , z , t S 1 ,
y u x , y , z , t y = 0 = ν 2 x , z , t ,   x , z , t S 2 ,
z u x , y , z , t z = 0 = ν 3 x , y , t ,   x , y , t S 3 ,
t u x , y , z , t t = 0 = ν 4 x , y , z ,   x , y , z S 4 ,
u x , y , z , t = φ x , y , z , t ,   x , y , z , t S 5 ¯ ,      
where ν 1 y , z , t , ν 2 x , z , t , ν 3 x , y , t , ν 4 x , y , z , φ x , y , z , t are given continuous functions, moreover the functions ν i     i = 1 ,     4 ¯ at the origin of coordinates can tend to infinity of the integrable order.
Theorem 1.
Let  ν 1 y , z , t C S 1 ,   ν 2 x , z , t C S 2 ,   ν 3 x , y , t C S 3 ,   ν 4 x , y , z C S 4 ,   φ x , y , z , t C 2 S 5 , then the solution of the problem N has unique solution and presented in the following form:
u x 0 , y 0 , z 0 , t 0 = S 1 y m z k t l ν 1 y , z , t G 1 0 , y , z , t ; x 0 , y 0 , z 0 , t 0 d y d z d t S 2 x n z k t l ν 2 x , z , t G 1 x , 0 , z , t ; x 0 , y 0 , z 0 , t 0 d x d z d t S 3 x n y m t l ν 3 x , y , t G 1 x , y , 0 , t ; x 0 , y 0 , z 0 , t 0 d x d y d t S 4 x n y m z k ν 4 x , y , z G 1 x , y , z , 0 ; x 0 , y 0 , z 0 , t 0 d x d y d z S 5 x n y m z k t l φ σ A S G 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 d σ . .

3.2. Proof of Results

3.2.1. Uniqueness of Solution

Let u x , y , z , t be the solution of a homogeneous problem N, i.e., satisfying the conditions (10)–(14) when
ν 1 y , z , t = ν 2 x , z , t = ν 3 x , y , t = ν 4 x , y , z = φ x , y , z , t = 0 .
By D ε , we denote the domain strictly lying inside the domain D , D ε D , where the distance from the border D ε to the border D is equal to ε . Here D = S 1 S 2 S 3 S 4 S 5 .
By applying easily verifiable equalities to the solution u x , y , z , t of the Equation (1)
y m z k t l u u x x = x y m z k t l u u x y m z k t l u x 2 ,             x n z k t l u u y y = y x n z k t l u u y x n z k t l u y 2 , x n y m t l u u z z = z x n y m t l u u z x n y m t l u z 2 ,         x n y m z k u u t t = t x n y m z k u u t x n y m z k u t 2 ,
it is not difficult to ascertain, that
0 = D ε u H u d x d y d z d t = D ε x y m z k t l u u x + y x n z k t l u u y + z x n y m t l u u z + t x n y m z k u u t d x d y d z d t D ε y m z k t l u x 2 + x n z k t l u y 2 + x n y m t l u z 2 + x n y m z k u t 2 d x d y d z d t .
Hence
D ε y m z k t l u x 2 + x n z k t l u y 2 + x n y m t l u z 2 + x n y m z k u t 2 d x d y d z d t = = D ε x y m z k t l u u x + y x n z k t l u u y + z x n y m t l u u z + t x n y m z k u u t   d x d y d z d t .
Applying the Gauss–Ostrogradsky formula to (17), then passing to the limit at ε 0 , we have
D y m z k t l u x 2 + x n z k t l u y 2 + x n y m t l u z 2 + x n y m z k u t 2 d x d y d z d t = = D u y m z k t l u x cos n , x + x n z k t l u y cos n , y + x n y m t l u z cos n , z + x n y m z k u t cos n , t   d S ,
where n is external normal to D , cos n , x d S = d y d z d t , cos n , y d S = d x d z d t , cos n , z d S = d x d y d t , cos n , t d S = d x d y d z .
Taking into account the boundary conditions (10)–(14), we obtain
D y m z k t l u x 2 + x n z k t l u y 2 + x n y m t l u z 2 + x n y m z k u t 2 d x d y d z d t = = S 1 y m z k t l u ν 1 d y d z d t + S 2 x n z k t l u ν 2 d x d z d t + S 3 x n y m t l u ν 3 d x d y d t + + S 4 x n y m z k u ν 4 d x d y d z S 5 x n y m z k t l φ A s u d S ,
where
A S   = y m z k t l cos ( x , n ) x + x n z k t l cos ( y , n ) y + x n y m t l cos ( z , n ) z + x n y m z k cos ( t , n ) t
With considering (16) from (18) we get
D y m z k t l u x 2 + x n z k t l u y 2 + x n y m t l u z 2 + x n y m z k u t 2 d x d y d z d t = 0 .
The equality (20) implies that u x = u y = u z = u t = 0 , i.e., so u x , y , z , t = c o n s t . Since the problem is homogeneous, then u x , y , z , t = 0 in the domain D ¯ ; thus, uniqueness of solution is proved. □

3.2.2. Existence of Solution

Green’s function of the boundary value problem N. Consider the case when the surface S 5 at x > 0 ,     y > 0 ,   z > 0 ,     t > 0   coincides with a part of the surface
4 n + 2 2 x n + 2 + 4 m + 2 2 y m + 2 + 4 k + 2 2 z k + 2 + 4 l + 2 2 t l + 2 = ρ 2 .  
In this case, we show the existence of the problem solution by applying the Green’s function construction method.
Definition 1.
The function   G 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 is called the Green’s function of the problem N for the equation H u 0 if it satisfies the conditions:
(1) 
This function is a regular solution of the Equation (1) inside the domain D except for the point x 0 , y 0 , z 0 , t 0 ;
(2) 
It satisfies the boundary conditions
x G 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 x = 0 = 0 ,   y G 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 y = 0 = 0 , z G 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 z = 0 = 0 , t G 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 t = 0 = 0 G 1 x , y , z ; x 0 , y 0 , z 0 S 5 = 0 ;  
(3)
The Green’s function is represented as
G 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 = g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 + g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 ;  
where
g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 = k 1 r 2 α + β + γ + δ + 1 F A 4 α + β + γ + δ + 1 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς  
is the fundamental solution of the Equation (1), while g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 is a regular solution of the Equation (1) everywhere in the domain D , F A 4 is represented in the form (2)
k 1 = 1 4 π 2 4 n + 2 2 α 4 m + 2 2 β 4 k + 2 2 γ 4 l + 2 2 δ ×                                                                                                                         × Γ α + β + γ + δ + 1 Γ α Γ β Γ γ Γ δ Γ 2 α Γ 2 β Γ 2 γ Γ 2 δ   ,
α = n 2 n + 2 ,       β = m 2 m + 2 ,       γ = k 2 k + 2 ,       δ = l 2 l + 2 ,
ξ = r 2 r 1 2 r 2 ,       η = r 2 r 2 2 r 2 ,       ζ = r 2 r 3 2 r 2 ,       ς = r 2 r 4 2 r 2 ,
r 2 r 1 2 r 2 2 r 3 2 r 4 2 = 2 n + 2 x n + 2 2       +       2 n + 2 x 0 n + 2 2 2 + 2 m + 2 y m + 2 2       +       2 m + 2 y 0 m + 2 2 2 +       + 2 k + 2 z k + 2 2       +       2 k + 2 z 0 k + 2 2 2 + 2 l + 2 t l + 2 2       +       2 l + 2 t 0 l + 2 2 2 .
The regular part of the Green’s function, by virtue of conditions (21) and representation (22), must satisfy the following boundary conditions
g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 S 5 = g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 S 5 ,   x g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 x = 0 = 0 ,           y g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 y = 0 = 0 ,     z g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 z = 0 = 0 ,           t g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 t = 0 = 0 .
Due to the conditions (24), the regular part of the Green’s function can be represented as
g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 = ρ R 0 2 α + β + γ + δ + 1 g 1 x , y , z , t ; x 0 ¯ , y 0 ¯ , z 0 ¯ , t 0 ¯ ,
where
R 0 2 = 4 n + 2 2 x 0 n + 2 + 4 m + 2 2 y 0 m + 2 + 4 k + 2 2 z 0 k + 2 + 4 l + 2 2 t 0 l + 2 , x 0 ¯ n + 2 2 = ρ 2 R 0 2 x 0 n + 2 2 ,                 y 0 ¯ m + 2 2 = ρ 2 R 0 2 y 0 m + 2 2 ,                 z 0 ¯ k + 2 2 = ρ 2 R 0 2 z 0 k + 2 2 ,                 t 0 ¯ l + 2 2 = ρ 2 R 0 2 t 0 l + 2 2 .
By direct calculation, we can establish that the constructed function
G 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 = g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 ρ R 0 2 α + β + γ + δ + 1 g 1 x , y , z , t ; x 0 ¯ , y 0 ¯ , z 0 ¯ , t 0 ¯
satisfies all conditions of Definition 1. Thus, in the case when a = n + 2 2 ρ n + 2 2 ,     b = m + 2 2 ρ m + 2 2 ,     c = k + 2 2 ρ k + 2 2 ,     e = l + 2 2 ρ l + 2 2 , that is, when S 5 at x > 0 ,     y > 0 ,   z > 0 ,     t > 0   coincides with 1/16 of the surface
4 n + 2 2 x n + 2 + 4 m + 2 2 y m + 2 + 4 k + 2 2 z k + 2 + 4 l + 2 2 t l + 2 = ρ 2
Proof of the solution existence.
Let the point x 0 , y 0 , z 0 , t 0 D . We cut out from the region D a four-dimensional ball of small radius ε with the center at the point x 0 , y 0 , z 0 , t 0 , denote the remaining part of the region D by D ε , in which the Green’s function G 1 x , y , z ; x 0 , y 0 , z 0 will be a regular solution of Equation (1), and denote the three-dimensional sphere of the cut ball by C ε . □
Consider the identity
u H w w H u = x y m z k t l u w x w u x + y x n z k t l u w y w u y +                               + z x n y m t l u w z w u z + t x n y m z k u w t w u t .
Integrating the reduced identity over the domain D and applying the Gauss–Ostrogradsky formula, we obtain the following formula:
D u H w w H u d x d y d z d t = D y m z k t l u w x w u x cos n , x + x n z k t l × × u w y w u y cos n , y + x n y m t l u w z w u z cos n , z + x n y m z k u w t w u t cos n , t d S .
If u x , y , z , t  and w(x,y,z,t) are the solutions of Equation (1), then from Formula (25) we have
D u A s w w A s u d S = 0 ,
where A s u and A s w determined by the Formula (19).
By applying the Formula (26), we get
C ε u A s G 1 G 1 A s u d S = S 1 y m z k t l ν 1 y , z , t G 1 0 , y , z , t ; x 0 , y 0 , z 0 , t 0 d y d z d t S 2 x n z k t l ν 2 x , z , t G 1 x , 0 , z , t ; x 0 , y 0 , z 0 , t 0 d x d z d t   S 3 x n y m t l ν 3 x , y , t G 1 x , y , 0 , t ; x 0 , y 0 , z 0 , t 0 d x d y d t S 4 x n y m z k ν 4 x , y , z G 1 x , y , z , 0 ; x 0 , y 0 , z 0 , t 0 d x d y d z S 5 x n y m z k t l φ σ A s G 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 d σ .
In (27), the following formulas for the functions F A 4   contained in the representation of the Green’s function G 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 (22) are valid:
F A 4 a ; b 1 , b 2 , b 3 , b 4 ; c 1 , c 2 , c 3 , c 4 ; 0 , y , z , t = F A 3 a ; b 2 , b 3 , b 4 ; c 2 , c 3 , c 4 ; y , z , t , F A 4 a ; b 1 , b 2 , b 3 , b 4 ; c 1 , c 2 , c 3 , c 4 ; x , 0 , z , t = F A 3 a ; b 1 , b 3 , b 4 ; c 1 , c 3 , c 4 ; x , z , t , F A 4 a ; b 1 , b 2 , b 3 , b 4 ; c 1 , c 2 , c 3 , c 4 ; x , y , 0 , t = F A 3 a ; b 1 , b 2 , b 4 ; c 1 , c 2 , c 4 ; x , y , t , F A 4 a ; b 1 , b 2 , b 3 , b 4 ; c 1 , c 2 , c 3 , c 4 ; x , y , z , 0 = F A 3 a ; b 1 , b 2 , b 3 ; c 1 , c 2 , c 3 ; x , y , z .
By substituting (28) in (22), we have
G 1 0 , y , z , t ; x 0 , y 0 , z 0 , t 0 = k 1 F A 3 α + β + γ + δ + 1 ; β , γ , δ ; 2 β , 2 γ , 2 δ ; η 01 x , ζ 01 x , ς 01 x r x 2 α + β + γ + δ + 1                                             k 1 F A 3 α + β + γ + δ + 1 ; β , γ , δ ; 2 β , 2 γ , 2 δ ; η 02 x , ζ 02 x , ς 02 x r s x 2 α + β + γ + δ + 1 , G 1 x , 0 , z , t ; x 0 , y 0 , z 0 , t 0 = k 1 F A 3 α + β + γ + δ + 1 ; α , γ , δ ; 2 α , 2 γ , 2 δ ; ξ 01 y , ζ 01 y , ς 01 y r y 2 α + β + γ + δ + 1                                             k 1 F A 3 α + β + γ + δ + 1 ; α , γ , δ ; 2 α , 2 γ , 2 δ ; ξ 02 y , ζ 02 y , ς 02 y r s y 2 α + β + γ + δ + 1 , G 1 x , y , 0 , t ; x 0 , y 0 , z 0 , t 0 = k 1 F A 3 α + β + γ + δ + 1 ; α , β , δ ; 2 α , 2 β , 2 δ ; ξ 01 z , η 01 z , ς 01 z r z 2 α + β + γ + δ + 1                                             k 1 F A 3 α + β + γ + δ + 1 ; α , β , δ ; 2 α , 2 β , 2 δ ; ξ 02 z , η 02 z , ς 02 z r s z 2 α + β + γ + δ + 1 , G 1 x , y , z , 0 ; x 0 , y 0 , z 0 , t 0 = k 1 F A 3 α + β + γ + δ + 1 ; α , β , γ ; 2 α , 2 β , 2 γ ; ξ 01 t , η 01 t , ζ 01 t r t 2 α + β + γ + δ + 1 k 1 F A 3 α + β + γ + δ + 1 ; α , β , γ ; 2 α , 2 β , 2 γ ; ξ 02 t , η 02 t , ζ 02 t r s t 2 α + β + γ + δ + 1 ,
where
r x 2 = r 2 x = 0 ,         r y 2 = r 2 y = 0 ,           r z 2 = r 2 z = 0 ,           r t 2 = r 2 t = 0 , ξ 0 i y = ξ i y = 0   ,           ξ 0 i z = ξ i z = 0   ,         ξ 0 i t = ξ i t = 0   , η 0 i x = η i x = 0   ,           η 0 i z = η i z = 0   ,         η 0 i t = η i t = 0   ,   ζ 0 i x = ζ i x = 0   ,           ζ 0 i y = ζ i y = 0   ,         ζ 0 i t = ζ i t = 0   ,   ς 0 i x = ς i x = 0   ,           ς 0 i y = ς i y = 0   ,         ς 0 i z = ς i z = 0   ,   ξ i = σ i 2 n + 2 2 x x 0 n + 2 2 , η i = σ i 2 m + 2 2 y y 0 m + 2 2 , ζ i = σ i 2 k + 2 2 z z 0 k + 2 2 ,   ς i = σ i 2 l + 2 2 t t 0 l + 2 2 ,         i = 1 , 2 , σ 1 = 4 r 2 , σ 2 = 4 r s 2 ρ 2 R 0 2 , r s 2 = ρ 4 n + 2 2 x x 0 n + 2 2 ρ 2 + ρ 4 m + 2 2 y y 0 m + 2 2 ρ 2 + ρ 4 k + 2 2 z z 0 k + 2 2 ρ 2 + + ρ 4 l + 2 2 t t 0 l + 2 2 ρ 2 + 4 m + 2 2 y 0 m + 2 + 4 k + 2 2 z 0 k + 2 + 4 l + 2 2 t 0 l + 2 ρ 2 4 n + 2 2 x n + 2 + + 4 n + 2 2 x 0 n + 2 + 4 k + 2 2 z 0 k + 2 + 4 l + 2 2 t 0 l + 2 ρ 2 4 m + 2 2 y m + 2 + + 4 n + 2 2 x 0 n + 2 + 4 m + 2 2 y 0 m + 2 + 4 l + 2 2 t 0 l + 2 ρ 2 4 k + 2 2 z k + 2 + + 4 n + 2 2 x 0 n + 2 + 4 m + 2 2 y 0 m + 2 + 4 k + 2 2 z 0 k + 2 ρ 2 4 l + 2 2 t l + 2 3 ρ 2 , r s x 2 = r s 2 x = 0 ,         r s y 2 = r s 2 y = 0 ,           r s z 2 = r s 2 z = 0 ,           r s t 2 = r s 2 t = 0 .
The left part of the Equation (27) we divide into two integrals
C ε u A s G 1 G 1 A s u d S = C ε u A s G 1 d S C ε G 1 A s u d S ,
we calculate the first of these integrals
I = C ε u A s G 1 d S .
By virtue of (22), the integral (31) is converted as the following:
I = I 1 + I 2 = C ε u A s g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 d S + C ε u A s g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 d S .
According to (19)
A s g 1 = y m z k t l cos ( x , n ) g 1 x + x n z k t l cos ( y , n ) g 1 y +                                                                                                 + x n y m t l cos ( z , n ) g 1 z + x n y m z k cos ( t , n ) g 1 t .
Using the formula for differentiating hypergeometric functions (3) we calculate the partial derivatives of the fundamental solution g 1 from (33):
g 1 x = α + β + γ + δ + 1 k 1 x n 2 r 2 α + β + γ + δ + 2 4 n + 2 x n + 2 2 x 0 n + 2 2 × × F A 4 α + β + γ + δ + 1 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς 2 α + β + γ + δ + 1 k 1 x n 2 r 2 α + β + γ + δ + 2 × 4 n + 2 α 1 2 α 1 x 0 n + 2 2 F A 4 α + β + γ + δ + 2 ; α + 1 , β , γ , δ ; 2 α + 1 , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς + 2 n + 2 x n + 2 2 x 0 n + 2 2 α 1 2 α 1 ξ F A 4 α + β + γ + δ + 2 ; α + 1 , β , γ , δ ; 2 α + 1 , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς + β 1 2 β 1 η F A 4 α + β + γ + δ + 2 ; α , β + 1 , γ , δ ; 2 α , 2 β + 1 , 2 γ , 2 δ ; ξ , η , ζ , ς + γ 1 2 γ 1 ζ F A 4 α + β + γ + δ + 2 ; α , β , γ + 1 , δ ; 2 α , 2 β , 2 γ + 1 , 2 δ ; ξ , η , ζ , ς + δ 1 2 δ 1 ς F A 4 α + β + γ + δ + 2 ; α , β , γ , δ + 1 ; 2 α , 2 β , 2 γ , 2 δ + 1 ; ξ , η , ζ , ς .
In (34) using the formula of adjacent relations (4) we get the following
g 1 x = 4 n + 2 k 1 α + β + γ + δ + 1 x n 2 r 2 α β γ δ 2 × × x 0 n + 2 2 F A 4 α + β + γ + δ + 2 ; α + 1 , β , γ , δ ; 2 α + 1 , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς + + x n + 2 2 x 0 n + 2 2 F A 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς .
The other derivatives are found similarly:
g 1 y = 4 m + 2 k 1 α + β + γ + δ + 1 y m 2 r 2 α β γ δ 2 × × y 0 m + 2 2 F A 4 α + β + γ + δ + 2 ; α , β + 1 , γ , δ ; 2 α , 2 β + 1 , 2 γ , 2 δ ; ξ , η , ζ , ς + + y m + 2 2 y 0 m + 2 2 F A 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς , g 1 z = 4 k + 2 k 1 α + β + γ + δ + 1 z k 2 r 2 α β γ δ 2 × × z 0 k + 2 2 F A 4 α + β + γ + δ + 2 ; α , β , γ + 1 , δ ; 2 α , 2 β , 2 γ + 1 , 2 δ ; ξ , η , ζ , ς + + z k + 2 2 z 0 k + 2 2 F A 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς , g 1 t = 4 l + 2 k 1 α + β + γ + δ + 1 t l 2 r 2 α β γ δ 2 × × t 0 l + 2 2 F A 4 α + β + γ + δ + 2 ; α , β , γ , δ + 1 ; 2 α , 2 β , 2 γ , 2 δ + 1 ; ξ , η , ζ , ς + + t l + 2 2 t 0 l + 2 2 F A 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς .
By substituting the partial derivatives into (33), we get
A s g 1 = α + β + γ + δ + 1 k 1 r 2 α β γ δ 1 × F A 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς A s ln r 2 2 k 1 α + β + γ + δ + 1 r 2 α β γ δ 2 2 n + 2 x 0 n + 2 2 x n 2 y m z k t l × F A 4 α + β + γ + δ + 2 ; α + 1 , β , γ , δ ; 2 α + 1 , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς cos x , n 2 k 1 α + β + γ + δ + 1 r 2 α β γ δ 2 2 m + 2 y 0 m + 2 2 x n y m 2 z k t l × F A 4 α + β + γ + δ + 2 ; α , β + 1 , γ , δ ; 2 α , 2 β + 1 , 2 γ , 2 δ ; ξ , η , ζ , ς cos y , n 2 k 1 α + β + γ + δ + 1 r 2 α β γ δ 2 2 k + 2 z 0 k + 2 2 x n y m z k 2 t l × F A 4 α + β + γ + δ + 2 ; α , β , γ + 1 , δ ; 2 α , 2 β , 2 γ + 1 , 2 δ ; ξ , η , ζ , ς cos z , n 2 k 1 α + β + γ + δ + 1 r 2 α β γ δ 2 2 l + 2 t 0 l + 2 2 x n y m z k t l 2 × F A 4 α + β + γ + δ + 2 ; α , β , γ , δ + 1 ; 2 α , 2 β , 2 γ , 2 δ + 1 ; ξ , η , ζ , ς cos t , n .
Substitute (35) into (32), then the first integral I1 will be represented as a sum of integrals:
I 1 = C ε u A s g 1 x , y , z , t ; x 0 , y 0 , z 0 , t 0 d S = I 11 + I 12 + I 13 + I 14 + I 15 = = α + β + γ + δ + 1 k 1 C ε r 2 α β γ δ 1 × F A 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς A s ln r 2 u d S 2 α + β + γ + δ + 1 2 n + 2 x 0 n + 2 2 x n 2 k 1 C ε y m z k t l r 2 α β γ δ 2 × F A 4 α + β + γ + δ + 2 ; α + 1 , β , γ , δ ; 2 α + 1 , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς u d y d z d t 2 α + β + γ + δ + 1 2 m + 2 y 0 m + 2 2 y m 2 k 1 C ε x n z k t l r 2 α β γ δ 2 × F A 4 α + β + γ + δ + 2 ; α , β + 1 , γ , δ ; 2 α , 2 β + 1 , 2 γ , 2 δ ; ξ , η , ζ , ς u d x d z d t 2 α + β + γ + δ + 1 2 k + 2 z 0 k + 2 2 z k 2 k 1 C ε x n y m t l r 2 α β γ δ 2 × F A 4 α + β + γ + δ + 2 ; α , β , γ + 1 , δ ; 2 α , 2 β , 2 γ + 1 , 2 δ ; ξ , η , ζ , ς u d x d y d t 2 α + β + γ + δ + 1 2 l + 2 t 0 l + 2 2 t l 2 k 1 C ε x n y m z k r 2 α β γ δ 2 × F A 4 α + β + γ + δ + 2 ; α , β , γ , δ + 1 ; 2 α , 2 β , 2 γ , 2 δ + 1 ; ξ , η , ζ , ς u d x d y d z .
To calculate the integral (36), first we need to calculate the integral
I 11 = α + β + γ + δ + 1 k 1 C ε r 2 α β γ δ 1 ×                                                 × F A 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ , η , ζ , ς A s ln r 2 u d S .
In (37), we move to the hyperspherical coordinates at n = 4
x = x 0 + ε sin θ 1 sin θ 2 sin θ 3 , y = y 0 + ε cos θ 1 sin θ 2 sin θ 3 , z = z 0 + ε cos θ 2 sin θ 3 , t = t 0 + ε cos θ 3 , 0 θ 1 < 2 π , 0 θ 2 π , 0 θ 3 π .
Then we have
I 11 = 2 α + β + γ + δ + 1 k 1 0 2 π 0 π 0 π r ˜ 2 α 2 β 2 γ 2 δ 3 ε 3 x 0 + ε sin θ 1 sin θ 2 sin θ 3 n × × y 0 + ε cos θ 1 sin θ 2 sin θ 3 m z 0 + ε cos θ 2 sin θ 3 k t 0 + ε cos θ 3 l sin θ 2 sin 2 θ 3 × × u x 0 + ε sin θ 1 sin θ 2 sin θ 3 , y 0 + ε cos θ 1 sin θ 2 sin θ 3 , z 0 + ε cos θ 2 sin θ 3 , t 0 + ε cos θ 3 × F A s 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ s , η s , ζ s , ς s d θ 1 d θ 2 d θ 3 d ε ,
where a multi-argument decomposition Formula (5) was applied to the function F A s 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ s , η s , ζ s , ς s :
F A s 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ s , η s , ζ s , ς s = = k 2 , k 3 , k 4 α + β + γ + δ + 2 k 2 + k 3 + k 4 α k 2 + k 3 + k 4 β k 2 γ k 3 δ k 4 2 α k 2 + k 3 + k 4 2 β k 2 2 γ k 3 2 δ k 4 k 2 ! k 3 ! k 4 ! × i , j , k = 0 α + β + γ + δ + 2 + k 2 + k 3 + k 4 i + j + k β + k 2 i + j γ + k 3 i + k δ + k 4 j + k 2 β + k 2 i + j 2 γ + k 3 i + k 2 δ + k 4 j + k i ! j ! k ! × ξ s k 2 + k 3 + k 4 η s k 2 + i + j ζ s k 3 + i + k ς s k 4 + j + k × F α + β + γ + δ + 2 + k 2 + k 3 + k 4 , α + k 2 + k 3 + k 4 ; 2 α + k 2 + k 3 + k 4 ; ξ s × F α + β + γ + δ + 2 + k 2 + k 3 + k 4 + i + j , β + k 2 + i + j ; 2 β + k 2 + i + j ; η s × F α + β + γ + δ + 2 + k 2 + k 3 + k 4 + i + j + k , γ + k 3 + i + k ; 2 γ + k 3 + i + k ; ζ s × F α + β + γ + δ + 2 + k 2 + k 3 + k 4 + i + j + k , δ + k 4 + j + k ; 2 δ + k 4 + j + k ; ς s .
We use the Boltz auto transformation Formula (6) in the resulting decomposition
F A s 4 α + β + γ + δ + 2 ; α , β , γ , δ ; 2 α , 2 β , 2 γ , 2 δ ; ξ s , η s , ζ s , ς s = = k 2 , k 3 , k 4 α + β + γ + δ + 2 k 2 + k 3 + k 4 α k 2 + k 3 + k 4 β k 2 γ k 3 δ k 4 2 α k 2 + k 3 + k 4 2 β k 2 2 γ k 3 2 δ k 4 k 2 ! k 3 ! k 4 ! × i , j , k = 0 α + β + γ + δ + 2 + k 2 + k 3 + k 4 i + j + k β + k 2 i + j γ + k 3 i + k δ + k 4 j + k 2 β + k 2 i + j 2 γ + k 3 i + k 2 δ + k 4 j + k i ! j ! k ! × ξ s k 2 + k 3 + k 4 1 ξ s α + k 2 + k 3 + k 4 η s k 2 + i + j 1 η s β + k 2 + i + j ζ s k 3 + i + k 1 ζ s γ + k 3 + i + k ς s k 4 + j + k 1 ς s δ + k 4 + j + k × F α + β + γ + δ + 2 + k 2 + k 3 + k 4 , α + k 2 + k 3 + k 4 ; 2 α + k 2 + k 3 + k 4 ; ξ s ξ s 1 × F α + β + γ + δ + 2 + k 2 + k 3 + k 4 + i + j , β + k 2 + i + j ; 2 β + k 2 + i + j ; η s η s 1 × F α + β + γ + δ + 2 + k 2 + k 3 + k 4 + i + j + k , γ + k 3 + i + k ; 2 γ + k 3 + i + k ; ζ s ζ s 1 × F α + β + γ + δ + 2 + k 2 + k 3 + k 4 + i + j + k , δ + k 4 + j + k ; 2 δ + k 4 + j + k ; ς s ς s 1 , ξ s = 1 r ˜ 2 4 n + 2 2 x 0 2 + x 0 ε sin θ 1 sin θ 2 sin θ 3 n + 2 2 ,     η s = 1 r ˜ 2 4 m + 2 2 y 0 2 + y 0 ε cos θ 1 sin θ 2 sin θ 3 m + 2 2 ζ s = 1 r ˜ 2 4 k + 2 2 z 0 2 + z 0 ε cos θ 2 sin θ 3 k + 2 2 ,                             ς s = 1 r ˜ 2 4 l + 2 2 t 0 2 + t 0 ε cos θ 3 l + 2 2 , r ˜ 2 = 4 n + 2 2 x 0 + ε sin θ 1 sin θ 2 sin θ 3 n + 2 2 x 0 n + 2 2 2 + 4 m + 2 2 y 0 + ε cos θ 1 sin θ 2 sin θ 3 m + 2 2 y 0 m + 2 2 2                       + 4 k + 2 2 z 0 + ε cos θ 2 sin θ 3 k + 2 2 z 0 k + 2 2 2 + 4 l + 2 2 t 0 + ε cos θ 3 l + 2 2 0 l + 2 2 2 .
After the transformations, we get
F A s 4 = r ˜ 2 α + 2 β + 2 γ + 2 δ r ˜ 2 + 4 n + 2 2 x 0 2 + x 0 ε sin θ 1 sin θ 2 sin θ 3 n + 2 2 α × × r ˜ 2 + 4 m + 2 2 y 0 2 + y 0 ε cos θ 1 sin θ 2 sin θ 3 m + 2 2 β r ˜ 2 + 4 k + 2 2 z 0 2 + z 0 ε cos θ 2 sin θ 3 k + 2 2 γ × r ˜ 2 + 4 l + 2 2 t 0 2 + t 0 ε cos θ 3 l + 2 2 δ Ρ ,
where
Ρ = k 2 , k 3 , k 4 α + β + γ + δ + 2 k 2 + k 3 + k 4 α k 2 + k 3 + k 4 β k 2 γ k 3 δ k 4 2 α k 2 + k 3 + k 4 2 β k 2 2 γ k 3 2 δ k 4 k 2 ! k 3 ! k 4 ! × × i , j , k = 0 α + β + γ + δ + 2 + k 2 + k 3 + k 4 i + j + k β + k 2 i + j γ + k 3 i + k δ + k 4 j + k 2 β + k 2 i + j 2 γ + k 3 i + k 2 δ + k 4 j + k i ! j ! k ! × 1 r ˜ 2 r ˜ 2 + 4 n + 2 2 x 0 2 + x 0 ε sin θ 1 sin θ 2 sin θ 3 n + 2 2 k 2 + k 3 + k 4 1 r ˜ 2 r ˜ 2 + 4 m + 2 2 y 0 2 + y 0 ε cos θ 1 sin θ 2 sin θ 3 m + 2 2 k 2 + i + j × 1 r ˜ 2 r ˜ 2 + 4 k + 2 2 z 0 2 + z 0 ε cos θ 2 sin θ 3 k + 2 2 k 3 + i + k 1 r ˜ 2 r ˜ 2 + 4 l + 2 2 t 0 2 + t 0 ε cos θ 3 l + 2 2 k 4 + j + k × F α β γ δ 2 , α + k 2 + k 3 + k 4 ; 2 α + k 2 + k 3 + k 4 ; 1 r ˜ 2 4 n + 2 2 x 0 2 + x 0 ε sin θ 1 sin θ 2 sin θ 3 n + 2 2 × F α + β γ δ 2 k 3 k 4 , β + k 2 + i + j ; 2 β + k 2 + i + j ; 1 r ˜ 2 4 m + 2 2 y 0 2 + y 0 ε cos θ 1 sin θ 2 sin θ 3 m + 2 2 × F α β + γ δ 2 k 2 k 4 j , γ + k 3 + i + k ; 2 γ + k 3 + i + k ; 1 r ˜ 2 4 k + 2 2 z 0 2 + z 0 ε cos θ 2 sin θ 3 k + 2 2 × F α β γ + δ 2 k 2 k 3 i , δ + k 4 + j + k ; 2 δ + k 4 + j + k ; 1 r ˜ 2 4 l + 2 2 t 0 2 + t 0 ε cos θ 3 l + 2 2 .
In (39), we pass to the limit at ε 0
lim ε 0 Ρ = k 2 , k 3 , k 4 α + β + γ + δ + 2 k 2 + k 3 + k 4 α k 2 + k 3 + k 4 β k 2 γ k 3 δ k 4 2 α k 2 + k 3 + k 4 2 β k 2 2 γ k 3 2 δ k 4 k 2 ! k 3 ! k 4 ! × i , j , k = 0 α + β + γ + δ + 2 + k 2 + k 3 + k 4 i + j + k β + k 2 i + j γ + k 3 i + k δ + k 4 j + k 2 β + k 2 i + j 2 γ + k 3 i + k 2 δ + k 4 j + k i ! j ! k ! × F α β γ δ 2 , α + k 2 + k 3 + k 4 ; 2 α + k 2 + k 3 + k 4 ; 1 × F α + β γ δ 2 k 3 k 4 , β + k 2 + i + j ; 2 β + k 2 + i + j ; 1 × F α β + γ δ 2 k 2 k 4 j , γ + k 3 + i + k ; 2 γ + k 3 + i + k ; 1 × F α β γ + δ 2 k 2 k 3 i , δ + k 4 + j + k ; 2 δ + k 4 + j + k ; 1 .
In (40), we calculate the values of the hypergeometric functions by the formula (9), then we have
F α β γ δ 2 , α + k 2 + k 3 + k 4 ; 2 α + k 2 + k 3 + k 4 ; 1 = = Γ 2 α + k 2 + k 3 + k 4 Γ β + γ + δ + 2 Γ α + β + γ + δ + 2 + k 2 + k 3 + k 4 Γ α , F α + β γ δ 2 k 3 k 4 , β + k 2 + i + j ; 2 β + k 2 + i + j ; 1 = = Γ 2 β + k 2 + i + j Γ α + γ + δ + 2 + k 3 + k 4 Γ α + β + γ + δ + 2 + k 3 + k 2 + k 4 + i + j Γ β , F α β + γ δ 2 k 2 k 4 j , γ + k 3 + i + k ; 2 γ + k 3 + i + k ; 1 = Γ 2 γ + k 3 + i + k Γ α + β + δ + 2 + k 2 + k 4 + j Γ α + β + δ + γ + 2 + k 2 + k 4 + k 3 + i + j + k Γ γ , F α β γ + δ 2 k 2 k 3 i , δ + k 4 + j + k ; 2 δ + k 4 + j + k ; 1 = = Γ 2 δ + k 4 + j + k Γ α + β + γ + 2 + k 2 + k 3 + i Γ α + β + γ + δ + 2 + k 2 + k 3 + k 4 + i + j + k Γ δ .
We substitute (41) in (40), calculating the double sum based on gamma function properties (7) and (8), we get
lim ε 0 Ρ = Γ 2 α Γ 2 β Γ 2 γ Γ 2 δ Γ α Γ β Γ γ Γ δ Γ α + β + γ + δ + 2 .
Taking into account the previous calculations and transformations, from (38) we get the following:
lim ε 0 I 11 = 4 π 2 k 1 Γ 2 α Γ 2 β Γ 2 γ Γ 2 δ Γ α + β + γ + δ + 1 Γ α Γ β Γ γ Γ δ ×                                                                         × 4 n + 2 2 α 4 m + 2 2 β 4 k + 2 2 γ 4 l + 2 2 δ u x 0 , y 0 , z 0 , t 0 .
Taking into account the value of the coefficient k 1 from (23), we have
lim ε 0 I 11 = u x 0 , y 0 , z 0 , t 0 .
By performing similar calculations, we can make sure that
lim ε 0 I 12 = lim ε 0 I 13 = lim ε 0 I 14 = lim ε 0 I 15 = lim ε 0 I 2 = 0 .
Let us consider the second integral of (30) C ε G 1 A s u d S . Using the algorithm used in the calculation (31), it is not difficult to prove that
lim ε 0 C ε G 1 A s u d S = 0 .
Thus, from (27) we get the solution of the problem N (15). Theorem 1 is proved.

4. Conclusions

In this paper, we have constructed a Green’s function of the Holmgren’s problem counterpart for a degenerate second order elliptic Gellerstedt equation, with the help of which an explicit solution of the problem is obtained and a uniqueness of the problem solution is proved. By applying the methods used in this paper and selecting the corresponding fundamental solutions, it is also possible to study the solvability of a number of different boundary value problems for Equation (1).

Author Contributions

Conceptualization, A.B. and A.R.; methodology, A.B.; software, Z.B.; validation, A.B. and A.R.; formal analysis, A.R. and Z.B.; investigation, A.B. and A.R.; resources, A.R.; data curation, Z.B.; writing—original draft preparation, A.R.; writing—review and editing, A.R. and A.B.; supervision, A.B.; project administration, A.R.; funding acquisition, Z.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grants No. AP09058677, No. AP09261179).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Tricomi, F.G. Sulle Equazioni Lineari alle derivate Parziali di 2° Ordine, di Tipo Misto. Atti. Accad. Naz. Lincei 1923, 14, 133–247. [Google Scholar]
  2. Frankl, F.I. Selected Works on Gas Dynamics; Nauka: Moscow, Russia, 1973. (In Russian) [Google Scholar]
  3. Smirnov, M.M. Degenerate Elliptic and Hyperbolic Equations; Nauka: Moscow, Russia, 1966. (In Russian) [Google Scholar]
  4. Bers, L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics; Wiley: New York, NY, USA, 1958. [Google Scholar]
  5. Kovalenko, A.D.; Grigorenko, Y.M.; Il’in, L.A. Theory of Thin Conical Shells and Its Application in Mechanical Engineering; Izd. AN USSR: Kiev, Russia, 1963. (In Russian) [Google Scholar]
  6. Kogan, M.N. On magnetohydrodynamic ows of mixed. App. Mat. Fur. 1961, 25, 132–137. (in Russian). [Google Scholar]
  7. Smart, U.M. Celestial Mechanics; Mir: Moscow, Russia, 1965. (In Russian) [Google Scholar]
  8. Candelas, P.; De la Ossa, X.; Greene, P.; Parkes, L. A pair of Calabi-Yau manifolds as an exactly soluble super conformal theory. Nucl. Phys. 1991, B539, 21–74. [Google Scholar] [CrossRef]
  9. Varchenko, A. Adv. Ser. in Math. Phys. In Multidimensional Hypergeometric Functions and Representation Theory of Lie Algebras and Quantum Groups; World Scientific: Singapore, 1995; Volume 21. [Google Scholar]
  10. Vinogradov, Y.I.; Konstantinov, M.V. Calculation of a spherical tank under local impact. Izv. RAS Ser. Solid State Mech. 2016, 2, 109–120. [Google Scholar]
  11. Berdyshev, A.S.; Hasanov, A.; Ryskan, A.R. Decomposition formulas for some quadruple hypergeometric series. Bull. Karaganda Univ. Math. Ser. 2020, 4, 43–54. [Google Scholar] [CrossRef]
  12. Brown, R.T. Electronic Interaction Integrals for Atoms Calculated with Laguerre Polynomial Radial Wavefunctions. J. Chem. Phys. 1967, 46, 1551. [Google Scholar] [CrossRef]
  13. Gellerstedt, S. Some mixed problems for the equation ymzxx + zyy = 0. Arch. Math. Astr. Phys. 1937, B 26A, 1–32. [Google Scholar]
  14. Hasanov, A. Fundamental solutions of generalized bi-axially symmetric Helmholtz equation. Complex Var. Elliptic Equ. 2007, 52, 673–683. [Google Scholar] [CrossRef]
  15. Salakhitdinov, M.S.; Hasanov, A. A solution of the Neumann-Dirichlet boundary-value problem for generalized bi-axially symmetric Helmholtz equation. Complex Var. Elliptic Equ. 2008, 53, 355–364. [Google Scholar] [CrossRef]
  16. Berdyshev, A.S.; Hasanov, A.; Ergashev, T.G. Double-Layer Potentials for a generalized Bi-Axially Symmetric Helmholtz Equation. II. Complex Var. Elliptic Equ. 2020, 65, 316–332. [Google Scholar] [CrossRef]
  17. Hasanov, A.; Karimov, E.T. Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients. Appl. Math. Lett. 2009, 22, 1828–1832. [Google Scholar] [CrossRef] [Green Version]
  18. Hasanov, A.; Berdyshev, A.S.; Ryskan, A. Fundamental solutions for a class of four-dimensional degenerate elliptic equation. Complex Var. Elliptic Equ. 2020, 65, 632–647. [Google Scholar] [CrossRef]
  19. Berdyshev, A.S.; Ryskan, A. The Neumann and Dirichlet problems for one four-dimensional degenerate elliptic equation. Lobachevskii J. Math. 2020, 41, 1051–1066. [Google Scholar] [CrossRef]
  20. Berdyshev, A.S.; Hasanov, A.; Ryskan, A.R. Solution of the Neumann problem for one four-dimensional elliptic equation. Eurasian Math. J. 2020, 11, 93–97. [Google Scholar] [CrossRef]
  21. Karimov, E.T. On a boundary problem with Neumann’s condition for 3D singular elliptic equations. Appl. Math. Lett. 2010, 23, 517–522. [Google Scholar] [CrossRef] [Green Version]
  22. Karimov, E.T.; Nieto, J.J. The Dirichlet problem for a 3D elliptic equation with two singular coefficients. Comput. Math. Appl. 2011, 62, 214–224. [Google Scholar] [CrossRef] [Green Version]
  23. Appell, P.; Kampe de Feriet, J. Hypergeometric and Hyperspheric Functions. In Hermite Polynomials; Gauthier–Villars: Paris, France, 1926. (In French) [Google Scholar]
  24. Bateman, G.; Erdelyi, A. Higher Transcendental Functions. Hypergeometric Functions. Legendre Functions; Nauka: Moscow, Russoa, 1973. (In Russian) [Google Scholar]
  25. Hasanov, A.; Srivastava, H.M. Some decomposition formulas associated with the Lauricella function F A ( r ) and other multiple hypergeometric functions. Appl. Math. Lett. 2006, 19, 113–121. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Baishemirov, Z.; Berdyshev, A.; Ryskan, A. A Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation. Mathematics 2022, 10, 1094. https://doi.org/10.3390/math10071094

AMA Style

Baishemirov Z, Berdyshev A, Ryskan A. A Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation. Mathematics. 2022; 10(7):1094. https://doi.org/10.3390/math10071094

Chicago/Turabian Style

Baishemirov, Zharasbek, Abdumauvlen Berdyshev, and Ainur Ryskan. 2022. "A Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation" Mathematics 10, no. 7: 1094. https://doi.org/10.3390/math10071094

APA Style

Baishemirov, Z., Berdyshev, A., & Ryskan, A. (2022). A Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation. Mathematics, 10(7), 1094. https://doi.org/10.3390/math10071094

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop