Series of Floor and Ceiling Function—Part I: Partial Summations
Abstract
:1. Introduction
Outline of the Article
2. Preliminaries
2.1. Faulhaber’s (Bernoulli’s) Formula
2.2. Floor and Ceiling Functions
2.3. Finite Lower-Order Polylogarithm
2.4. Fibonacci Number
2.5. Pascal’s Identity
3. Foundations
4. Shah Formulae
5. Floor and Ceiling Geometric Series
6. Floor and Ceiling Telescoping Equivalent Formulae
7. Corollaries
7.1. Corollaries of Section 4
7.2. Corollaries of Section 5
7.3. Corollaries of Section 6
8. Relations of Fibonacci Numbers
9. Results for Specific Values
9.1. Specific Values—Section 4
9.2. Specific Values—Section 5
9.3. Specific Values—Section 6
9.3.1. Generalised Pascal Identities
Ceiling Pascal Identity
Floor Pascal Identity
9.3.2. Sum of Powers of First n Natural Numbers
9.4. Specific Values—Section 8
9.4.1. For
9.4.2. For
9.4.3. For
10. Proofs Using Principle of Mathematical Induction
Proofs
11. Conclusions and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knuth, D. The Art of Computer Programming, 3rd ed.; Addison-Wesley: Boston, MA, USA, 2013; pp. 79–84. [Google Scholar]
- Apostol, T. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
- Schumacher, R. An Extended Version of Faulhaber’s Formula. J. Integer Seq. 2016, 19, 16.4.2. [Google Scholar]
- Sahlmann, H.; Zilker, T. Quantum Surface Holonomies for Loop Quantum Gravity and Their Application to Black Hole Horizons. Phys. Rev. D 2020, 102, 026009. [Google Scholar] [CrossRef]
- MacMillan, K.; Sondow, J. Proofs of Power Sum and Binomial Coefficient Congruences Via Pascal’s Identity. Am. Math. Mon. 2011, 118, 549–551. [Google Scholar] [CrossRef]
- McGown, K.; Parks, H. The generalization of Faulhaber’s formula to sums of non-integral powers. J. Math. Anal. Appl. 2007, 330, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Merca, M. An Alternative to Faulhaber’s Formula. Am. Math. Mon. 2015, 122, 599–601. [Google Scholar] [CrossRef]
- Parks, H. Sums of non-integral powers. J. Math. Anal. Appl. 2004, 297, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Orosi, G. A Simple Derivation Of Faulhaber’s Formula. Appl. Math. E Notes 2018, 18, 124–126. [Google Scholar]
- Edwards, A. A Quick Route to Sums of Powers. Am. Math. Mon. 1986, 93, 451–455. [Google Scholar] [CrossRef]
- Gregg, C. Relations between the sums of powers of the natural numbers. Math. Gaz. 1960, 44, 118–120. [Google Scholar] [CrossRef]
- Chorlton, F. Finite Sums of Powers of the Natural Numbers. Math. Gaz. 1998, 82, 95–96. [Google Scholar] [CrossRef]
- Beardon, A. Sums of Powers of Integers. Am. Math. Mon. 1996, 103, 201–213. [Google Scholar] [CrossRef]
- Knuth, D. Johann Faulhaber Furthermore, Sums Of Powers. Math. Comput. 1993, 61, 277–294. [Google Scholar] [CrossRef]
- Frontczak, R.; Srivastava, H.M.; Tomovski, Z. Some Families of Apéry-Like Fibonacci and Lucas Series. Mathematics 2021, 9, 1621. [Google Scholar] [CrossRef]
- Conway, J.; Guy, R. The Book of Numbers; Copernicus: New York, NY, USA, 1998. [Google Scholar]
- Graham, R.L.; Knuth, D.E.; Patashnik, O. Concrete Mathematics: A Foundation for Computer Science; Addison-Wesley: Boston, MA, USA, 1994. [Google Scholar]
- The Computation of Polylogarithms. Technical Report 15–92. Available online: https://www.cs.kent.ac.uk/pubs/1992/110/ (accessed on 3 March 2022).
- Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers, 5th ed.; Clarendon Press: Oxford, UK, 1980. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, D.; Sahni, M.; Sahni, R.; León-Castro, E.; Olazabal-Lugo, M. Series of Floor and Ceiling Function—Part I: Partial Summations. Mathematics 2022, 10, 1178. https://doi.org/10.3390/math10071178
Shah D, Sahni M, Sahni R, León-Castro E, Olazabal-Lugo M. Series of Floor and Ceiling Function—Part I: Partial Summations. Mathematics. 2022; 10(7):1178. https://doi.org/10.3390/math10071178
Chicago/Turabian StyleShah, Dhairya, Manoj Sahni, Ritu Sahni, Ernesto León-Castro, and Maricruz Olazabal-Lugo. 2022. "Series of Floor and Ceiling Function—Part I: Partial Summations" Mathematics 10, no. 7: 1178. https://doi.org/10.3390/math10071178
APA StyleShah, D., Sahni, M., Sahni, R., León-Castro, E., & Olazabal-Lugo, M. (2022). Series of Floor and Ceiling Function—Part I: Partial Summations. Mathematics, 10(7), 1178. https://doi.org/10.3390/math10071178