Neutral Differential Equations of Second-Order: Iterative Monotonic Properties
Abstract
:1. Introduction
2. Main Results
- and are positive, and is negative;
- is positive, and are negative.
- (a)
- (b)
- is increasing;
- (c)
- (d)
- (a0)
- is decreasing;
- (b0)
- (c0)
- is increasing.
- (a1)
- is decreasing;
- (b1)
- (c1)
- is increasing.
- (an)
- is decreasing;
- (bn)
- (cn)
- is increasing.
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Functional Differential Equations; Oxford Applied Mathematical Sciences; Springer: New York, NY, USA; Heidelberg, Germany, 1971; Volume 3. [Google Scholar]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Academic: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Agarwal, R.P.; Bohner, M.; Li, W.-T. Nonoscillation and Oscillation: Theory for Functional Dif Ferential Equations, Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker, Inc.: New York, NY, USA, 2004; Volume 267. [Google Scholar]
- Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations, Oxford Mathematical Monographs; The Clarendon Press, Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Baculíková, B. Oscillatory behavior of the second order noncanonical differential equations. Electron. J. Qual. Theory Differ. Equ. 2019, 89, 1–11. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Moaaz, O.; Li, T.; Qaraad, B. Some oscillation theorems for nonlinear second-order differential equations with an advanced argument. Adv. Differ. Equ. 2020, 2020, 160. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovská, I. Sharp oscillation criteria for second-order neutral delay differential equations. Math. Meth. Appl. Sci. 2020, 43, 10041–10053. [Google Scholar] [CrossRef]
- Moaaz, O.; Elabbasy, E.M.; Qaraad, B. An improved approach for studying oscillation of generalized Emden-Fowler neutral differential equation. J. Inequal. Appl. 2020, 2020, 69. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Sun, B.; Thandapani, E. On the oscillation of higher-order half-linear delay differential equations. Appl. Math. Lett. 2011, 24, 1618–1621. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Baculíková, B.; Dzurina, J.; Graef, J.R. On The Oscillation of higher-order delay differential equations. J. Math. Sci. 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. Appl. Math. Comput. 2020, 377, 125192. [Google Scholar]
- Baleanu, D.; Mohammadi, H. A mathematical theoretical study of a particular system of Caputo–Fabrizio fractional differential equations for the Rubella disease model. Adv. Differ. Equ. 2020, 2020, 184. [Google Scholar] [CrossRef]
- Etemad, S.; Tellab, B.; Deressa, C.T.; Alzabut, J.; Li, Y.; Rezapour, S. On a generalized fractional boundary value problem based on the thermostat model and its numerical solutions via Bernstein polynomials. Adv. Differ. Equ. 2021, 2021, 458. [Google Scholar] [CrossRef]
- Moaaz, O.; Chalishajar, D.; Bazighifan, O. Some qualitative behavior of solutions of general class of difference equations. Mathematics 2019, 7, 585. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad., S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Rezapour, S.; Etemad, S.; Mohammadi, H. A mathematical analysis of a system of Caputo–Fabrizio fractional differential equations for the anthrax disease model in animals. Adv. Differ. Equ. 2020, 2020, 481. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef] [Green Version]
- Grace, S.R.; Dzurina, J.; Jadlovska, I.; Li, T. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequal. Appl. 2018, 2018, 193. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Anis, M.; Baleanu, D.; Muhib, A. More effective criteria for oscillation of second-order differential equations with neutral arguments. Mathematics 2020, 8, 986. [Google Scholar] [CrossRef]
- Moaaz, O.; Ramos, H.; Awrejcewicz, J. Second-order Emden–Fowler neutral differential equations: A new precise criterion for oscillation. Appl. Math. Lett. 2021, 118, 107172. [Google Scholar] [CrossRef]
- Jadlovská, I. New citeria for sharp oscillation of second-order neutral delay differential equations. Mathematics 2021, 9, 2089. [Google Scholar] [CrossRef]
- Baculíková, B. Oscillation of second-order nonlinear noncanonical differential equations with deviating argument. Appl. Math. Lett. 2019, 91, 68–75. [Google Scholar] [CrossRef]
- Džurina, J.; Jadlovská, I. A note on oscillation of second-order delay differential equations. Appl. Math. Lett. 2017, 69, 126–132. [Google Scholar] [CrossRef]
- Han, Z.; Li, T.; Sun, S.; Sun, Y. Remarks on the paper [Appl. Math. Comput. 207 (2009)388–396]. Appl. Math. Comput. 2010, 215, 3998–4007. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 2016, 274, 178–181. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovska, I. Oscillation criteria for second order neutral delay differential equation. Electron. J. Qual. Theory Differ. Equ. 2017, 62, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moaaz, O.; Masood, F.; Cesarano, C.; Alsallami, S.A.M.; Khalil, E.M.; Bouazizi, M.L. Neutral Differential Equations of Second-Order: Iterative Monotonic Properties. Mathematics 2022, 10, 1356. https://doi.org/10.3390/math10091356
Moaaz O, Masood F, Cesarano C, Alsallami SAM, Khalil EM, Bouazizi ML. Neutral Differential Equations of Second-Order: Iterative Monotonic Properties. Mathematics. 2022; 10(9):1356. https://doi.org/10.3390/math10091356
Chicago/Turabian StyleMoaaz, Osama, Fahd Masood, Clemente Cesarano, Shami A. M. Alsallami, E. M. Khalil, and Mohamed L. Bouazizi. 2022. "Neutral Differential Equations of Second-Order: Iterative Monotonic Properties" Mathematics 10, no. 9: 1356. https://doi.org/10.3390/math10091356
APA StyleMoaaz, O., Masood, F., Cesarano, C., Alsallami, S. A. M., Khalil, E. M., & Bouazizi, M. L. (2022). Neutral Differential Equations of Second-Order: Iterative Monotonic Properties. Mathematics, 10(9), 1356. https://doi.org/10.3390/math10091356